
Computer Science

Interactive Sketching for the Early
Stages of User Interface Design

James A. Landay

December 19,1996

CMU-CS-96-201

\-4
^^B& ■

MWagüTIOW STATEMENT,*

Aapxored tea puotie t«l«o*i
)

v

5. .-."-^i'1??

g^E&a

WiSP

w^sPS»

l ^&0S$ '

.Yri-

1Ü

^
gg.''

5|fe\

Agpiovea tci p-üTiiac reisaasi

Interactive Sketching for the Early
Stages of User Interface Design

James A. Landay

December 19,1996

CMU-CS-96-201

School of Computer Science

Computer Science Division

Carnegie Mellon University
Pittsburgh, PA

Also appears as CMU-HCII-96-105
^mt^

«

Thesis Committee:
Brad A. Myers, Chair

James H. Morris, Co-Chair
Daniel Boyarski, CMU Department of Design

Roger B. Dannenberg
Thomas P. Moran, Xerox Palo Alto Research Center

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

© 1996 by James A. Landay

This research was sponsored by ARPA under contract no. N66001-94-C-6037.

Views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of DARPA or the United States Gov-
ernment.

19970702 061

Keywords: User interfaces, design, sketching, storyboarding, gesture recognition,
interaction techniques, pen-based computing, SILK

ACC

amegie School of Computer Science
"fellon

DOCTORAL THESIS
in the field of

Computer Science

Interactive Sketching for the Early Stages
of User Interface Design

JAMES A. LANDAY

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

iz/tfM
. ' ' THESIS COMMTTTEE CHAIR" DATE

^-A A

i ^
THESIS COMMITTEE CHAIR DATE

H) ^Tk n/nl^
DEPARTMENT HEAD DATE

APPROVED:

i 7 niAM DEAN DATE

Abstract

Current interactive user interface construction tools are often more of a hindrance than
a benefit during the early stages of interface design. These tools are hard to use and
they encourage designers and evaluators to focus on the wrong issues, such as color,
fonts, and alignment, at this early stage. Most designers prefer instead to sketch early
interface ideas on paper. However, designing on paper also has many drawbacks.
Paper-based designs are hard to edit and cannot easily be tested with users. This disser-
tation describes the design, implementation, and evaluation of an interactive sketching
tool called SILK that overcomes these problems and combines many of the benefits of
paper-based sketching with current electronic tools.

SILK allows designers to quickly sketch an interface using an electronic pad and
stylus. SILK preserves the important properties of pencil and paper: a rough drawing
can be produced quickly and the medium is flexible. However, unlike a paper sketch,
this electronic sketch is interactive and can easily be annotated and modified using
editing gestures.

SILK recognizes user interface widgets and other interface elements as they are
drawn and gives the designer feedback so that these inferences can be changed. Recog-
nized interface elements have built-in behaviors and thus these elements can be exer-
cised in their sketchy state. For example, the "elevator" in a sketched scrollbar can be
dragged up and down. Unfortunately, the behavior of individual widgets is insufficient
to test a working interface. SILK's electronic storyboards allow the illustration of the
dynamic behavior between interface elements, such as a dialog box appearing when a
button is pressed. A designer creates a storyboard by first copying sketched screens to
the storyboard window and then drawing transition arrows on the screens. The arrows
specify which objects cause transitions to which screens when the end-user clicks on
the objects. When the designer is satisfied with this early prototype, the system can
transform the sketch into an operational interface using real widgets in a specified
look-and-feel.

An evaluation of SILK, using professional and student designers, showed that it
was an effective tool for both early creative design and for communicating the result-
ing design ideas to other members of an engineering team. By supporting the early
phases of the interface design life cycle, electronic sketching can both ease the proto-
typing of user interfaces and improve the interfaces that are eventually produced.

111

IV

This work is dedicated to Hank Wan, my friend and
classmate. He lives on in the memory of his friends

andfamily.

Acknowledgments

First, I would like to thank my advisor, Brad Myers, for his continuous support
of me at CMU. I would never have gotten to the point of even starting this dissertation,
let alone finishing it, without his advice and support. He was always there to meet and
talk about my ideas and mark up my papers and chapters (several times). He kept me
thinking when I thought I had run into a fatal problem.

I would also like to thank my co-advisor, Jim Morris, and the rest of my commit-
tee for their great comments. I would especially like to single out Tom Moran, who
gave me more feedback and time out of his busy schedule than anyone next to Brad.
The dissertation is that much stronger because of it. There are other members of the
CMU faculty who also gave me valuable feedback, especially on my survey and evalu-
ation. In particular, I would like to thank Al Corbett, Bonnie John, and Jane Siegel.

This last year of work on the dissertation has been one of the best periods of my
life, thanks to the love and companionship of Eileen Toomey. Without her these last
few months would have been very hard for me. I look to the future and see that with
Eileen the rest of my life will be fulfilling no matter what I do. I would also like to
thank the United States Marines for putting on a great marathon, thus giving Eileen
and I another goal to work towards and accomplish this fall.

Besides my advisor, there has been one friend who is most responsible for help-
ing me complete this challenging program. Dave Kosbie has been a great friend and
mentor in both my chosen field and in the rest of my life. Without his encouragement
and incredibly motivational speech a few years ago, I would have left the program
without finishing. He also helped me see the importance of facing the questions in my
life and answering them. Thanks Dave!

Friends are something without which I could not have made it through this pro-
gram and time in my life. The best part of CMU SCS is the people who have chosen to
come here. Phoebe Sengers has been my officemate for over four years and I am only
saddened that I didn't know her in my first two years. She has always been fun to talk
to and a great supporter of me and my work. Thanks for reading this dissertation and
my papers! I would also like to thank Marc Ringuette and Jay Sipelstein. My house-
mates for four years, Jay and Marc were always there to talk to, proofread my papers,
work through my ideas, and have fun with.

Vll

vm

There were many others who helped me through this period and I hope to see
them out West: my classmates, Jonathan Hardwick, Sue Older, and Dennis Grinberg;
my lunch buddies, Anwar Ghuloum and Juan Leon. Finally, thanks to some of the oth-
ers who I enjoyed time with: Scott Nettles, Mike Gleicher, Rowan Davies, Howard
Gobioff, Joseph O'Sullivan, Lin Chase, Bob Harper, Bruce Maggs, Danny Sleator,
Francesmary Modugno, Belinda Thorn, Robbie Warner, Stewart Clamen, Bennett Yee,
and the home brew crew. Finally, I would like to thank the staff here at CMU. They are
an exemplary crew and make this ship sail smoothly.

IX

Contents

1 Introduction 1

1.1 Research Goals 2
1.2 Drawbacks of Current Design Methods 4
1.3 Advantages of Sketching for Design 8
1.4 Designing Interfaces with SILK 10
1.5 Design Range 22
1.6 Implementation 22
1.7 Thesis and Contributions 22
1.8 Dissertation Outline 23

2 Informal Survey of Designers 25

2.1 Methodology 25
2.2 Survey Results 26
2.3 Design Implications for SILK 31

3 Widget Recognition 33

3.1 Recognition Overview 33
3.2 Recognizing Widget Components 35
3.3 SILK Widgets 39
3.4 Composing Components 43
3.5 Recognition Examples 46
3.6 Revising Widget Inferences 48
3.7 Learning New Rules: A Proposal 52
3.8 Summary 55

4 Storyboarding 57

4.1 Drawbacks of Existing Tools 58
4.2 Visual Language 59
4.3 Examples 59
4.4 Screen Graphs 61
4.5 Storyboard User Interface 62
4.6 Implementation 63
4.7 Extending Storyboards 64
4.8 Summary 70

5 Support for Later Development Stages 71

5.1 Design Memory Mechanisms 71
5.2 Screen Transformations 74
5.3 Summary 77

6 Evaluation 79

6.1 Description of Usability Test 79
6.2 Results 86
6.3 Engineering Changes 106
6.4 Discussion 108

7 Related Work 109

7.1 Sketching on Paper 109
7.2 User Interface Software Tools Ill
7.3 Informal Interfaces 114
7.4 Pen-based User Interfaces 116
7.5 Sketching Tools 119
7.6 Recognition Technologies 120
7.7 Behavioral Specifications 127
7.8 Inferring Constraints 127
7.9 Summary 128

8 Future Work 129

8.1 Extensions to SILK 129
8.2 Additional User Studies 137
8.3 Domains for Informal Communications 138
8.4 Summary 140

9 Conclusions 141

9.1 Benefits of SILK's Approach 141
9.2 Limitations of SILK's Approach 142
9.3 Contributions 143
9.4 Final Remarks 145

A Design Survey Materials and Data 147

A.l Questionnaire 147
A.2 Summary of Data 149

XI

B Evaluation Materials 153

B. 1 Consent Forms 153
B.2 Initial Information Read to Participants 157
B.3 Designer Demographic Data Sheet 158
B.4 Engineer Demographic Data Sheet 159
B.5 SILK Demonstration Script 160
B.6 Practice Design Task 163
B.7 Measured Design Task 164
B.8 Engineering Task Description 165
B.9 Engineering Design Review Script 165
B.10 Designer Post-Evaluation Questionnaire 166
B.l 1 Engineer Post-Evaluation Questionnaire 168
B.12 Post-Experiment Information 169

C Evaluation Data 171

C.l Designer Demographic Information 172
C.2 Engineer Demographic Information 173
C.3 Experimental Data 174
C.4 Designs Produced 176
C.5 Post-Evaluation Questionnaire Results 191

D SILK Tutorial and Reference 201

D.l Introduction 201
D.2 Sketching vs. Gestures 201
D.3 Basic Components 201
D.4 Editing Commands and Gestures 203
D.5 Combining Basic Components Into Widgets 204
D.6 Practice Design Problem 205
D.7 Replacing Text 206
D.8 Storyboarding 208
D.9 Run Mode 209
D.10 SILK Quick Reference Manual 214

E SILK Rules 223

References 229

Xll

xm

List of Figures

Figure 1-1. This hand-drawn storyboard illustrates that the rectangle should rotate when the button is
pressed 1

Figure 1-2. A simple sketched interface screen containing a window, a rectangle, and a button 3

Figure 1-3. SILK storyboard that illustrates rotating the rectangle when the button is pressed 3

Figure 1-4. SILK can be used during all stages of user interface design, construction, and testing.... 4

Figure 1-5. Sketched application screen for a drawing editor. 6

Figure 1-6. The sketched application from Figure 1-5 created with a traditional user interface builder
(the Gilt tool supplied with Garnet [Myers 1990c]) 7

Figure 1-7. An ambiguous sketch that can be interpreted as either a radio button or a check box 9
Figure 1-8. The SILK windows: Storyboard, Sketch, Controls, and Finished (top to bottom) 11
Figure 1-9. A button composed of two primitive components: a rectangle and a squiggly line 12
Figure 1-10. Primitive components of recognized widgets are displayed in purple when the widget is

selected and are treated as a group for moving and growing 13
Figure 1-11. widget T^pe field and panel of buttons show that SILK has recognized a Button 13
Figure 1-12. Pressing the New Guess button causes SILK to make a new widget inference, focusing on

the selected primitive component(s) or widget(s) 14
Figure 1-13. Drawing an X-shape with the pen button or middle mouse button held down over objects

deletes them 15

Figure 1-14. Editing gestures for delete, group, ungroup, change inference, and text editing. The arrows
indicate a recommended direction to draw these gestures for best recognition
performance 15

Figure 1-15. Pressing the Decorate radio button switches SILK to Decorate mode 16
Figure 1-16. A "blob" drawn in Decorate mode has been added to the interface in Figure 1-9 16
Figure 1-17. Pressing the Annotate radio button switches SILK to Annotate mode 17

Figure 1-18. Annotations can be drawn, written, or typed and are displayed in blue 17
Figure 1-19. Pressing the Run radio button switches SILK to Run mode 18
Figure 1-20. Buttons are highlighted when the mouse is held down on them in Run mode 18
Figure 1-21. Three versions of the screen illustrated in Figure 1-16 are copied to the storyboard. ... 19
Figure 1-22. Arrows drawn on the storyboard indicate that when the button is clicked repeatedly, the

blob should grow twice and then the sequence should start over. 19
Figure 1-23. Iterative refinement of text labels: squiggle to handwritten to typed 20

Figure 1-24. Transformed version of the third screen from the storyboard shown in Figure 1-22 21

Figure 2-1. Sketch of a user interface for a voicemail application. Reproduced by permission of
Annette Wagner, Sun Microsystems 30

Figure 3-1. Phases of SILK's widget recognition algorithm 34
Figure 3-2. A vertical scroll bar composed of two rectangles 35
Figure 3-3. Primitive components recognized by SILK - rectangle, circle, line, and a squiggle that

represents text 35

Figure 3-4. Partially completed rectangles made up of L and U shapes 37

Figure 3-5. Primitive type buttons (bottom) in SILK Controls window 38

XIV

Figure 3-6. A button 39
Figure 3-7. Buttons are drawn in reverse video when the mouse button is held down over them. The

feedback is removed when the mouse is released 39

Figure 3-8. A check box 39

Figure 3-9. Check boxes display an X-shape in the box when they are selected with a mouse click on
the box. Another click on the box will deselect it and turn the feedback off. 39

Figure 3-10. A text field. Note: the text field currently offers no Run mode feedback 39

Figure 3-11. A radio button 40

Figure 3-12. Radio buttons fill the circle when they are selected with a mouse click on the circle.
Another click on the circle will deselect it and turn the feedback off. Note: if the radio
button is in a panel of buttons, only one can be selected at any time. Selecting a new radio
button in the same panel will deselect the currently selected radio button 40

Figure 3-13. A menu bar. Note: labels must be drawn at upper left corner of the SILK Sketch
window 40

Figure 3-14. Menu bars display a generic pulldown menu when the mouse is held down over the bar
items. The mouse can be moved between menu items in the resulting pulldowns. Another
menu can be selected by moving the mouse to the new bar item without releasing. The
currently selected bar item and menu item are enclosed by roundtangles. When the mouse
is released, the pulldown disappears. Note: currently, there is no way of specifying the
strings for the menu items (though they can be specified for the bar items) or the
transitions from those menu items 40

Figure 3-15. Vertical and horizontal scroll bars. The scroll bar "elevator" can be dragged within the
confines of the outer rectangle 41

Figure 3-16. A scrolling window. Note: scrolling windows can have any combination of scroll bars at
left and below. Currently, objects in the window do not scroll 41

Figure 3-17. A palette. Note: there can be an arbitrary number of boxes and arbitrary graphics can be
drawn in the boxes 42

Figure 3-18. Clicking on the rectangle containing a palette item selects it. The currently selected item is
displayed in inverse video. Only one item can be selected at a time 42

Figure 3-19. Test for vertical scroll bar rule 44

Figure 3-20. "Then" part for vertical scroll bar rule 45
Figure 3-21. Phases performed by the widget recognition algorithm on the example drawn in (a)

and (e) 46
Figure 3-22. Phases performed by the widget recognition algorithm on the example drawn in (a). .. 47

Figure 3-23. SILK infers that the designer has drawn a radio button. The buttons for check box and
multiple objects are also enabled, indicating those are possible alternative inferences. All
other buttons are grayed out, indicating they are not possible inferences 48

Figure 3-24. Should SDLK infer a check box or a text field? 49

Figure 3-25. Test for radio button rule 50

Figure 3-26. A radio button whose components have been drawn far apart 50

Figure 3-27. Radio button and check box potentially mistaken for a radio button panel 51

Figure 3-28. Text field that is not recognized by SILK 52

Figure 3-29. Test for text field rule 53

Figure 4-1. A storyboard that illustrates rotating a rectangle upon button presses 57
Figure 4-2. Make a dialog box appear and disappear when the appropriate button is pressed 60

XV

Figure 4-3. Scaling a circle with selection handles 60

Figure 4-4. A partial screen graph for a simple drawing tool. Clicking on a palette item changes the
state and then clicking on the background creates an object of the correct type. The bottom
button deletes the object 61

Figure 4-5. Parallel storyboards that allow the creation of circles and rectangles in any order. 65

Figure 4-6. A drawing that could be created with the parallel storyboards defined in Figure 4-5.... 65

Figure 4-7. One way to remove the ambiguity in Figure 4-5 - shared state that has two arrows leaving
on the same event. (Note: the grouped state feedback was added programmatically.)... 66

Figure 5-1. The annotation layer is displayed on top of the sketch 72

Figure 5-2. Dialog box for searching annotations on storyboard screens 72
Figure 5-3. The Motif transformation of the sketched screen illustrated in Figure 5-1 74

Figure 5-4. A screen that contains all the widgets recognized by SILK 75

Figure 5-5. The transformation of the sketch illustrated in Figure 5-4 75

Figure 6-1. The two designs produced by participant 7 during the task 87

Figure 6-2. One of two designs produced by participant 13 88

Figure 6-3. Participant 9's second design shows that a large number of screens is manageable 89
Figure 6-4. The second design by participant 15 shows that a large number of transitions per screen (in

this case, almost 4 transitions/screen) can be hard to manage and understand 89
Figure 6-5. The single design produced by participant 11. Note the small number of screens and the

lack of any transition arrows 90

Figure 6-6. Participant 13's second design was judged to be the best of the twelve considered 91
Figure 6-7. Revision of participant 7's first design made during engineering discussion 96
Figure 6-8. Caret gesture for creating and editing typed text 104
Figure 6-9. Replacing the squiggly text in (a) currently results in something like (b). A proposed

change would keep the inserted text right aligned with the text field box as in (c) 105
Figure 8-1. A user-defined slider - the triangle can slide up and down next to the rectangle 130
Figure 8-2. Storyboard to illustrate the behavior of a pair of user-defined radio buttons. Note that

SILK's built-in radio buttons have a similar behavior by default 132
Figure 8-3. Proposed drag arrow specifies dragging a scroll bar elevator within the scroll bar..... 133
Figure 8-4. Proposed drag and drop arrow (left) indicates that the paint pail can be dropped on the

blob to the right of it. Connected arrow (right) indicates that a screen transition should be
made after the drop has occurred - in this case filling the blob with paint 134

Figure 8-5. First screen for rough mock-up of CNN's web page 139

Figure 8-6. Storyboard for rough mock-up of CNN's web page 139
Figure C-l. First design of participant 7 176

Figure C-2. Second design of participant 7 177

Figure C-3. Third design of participant 7. This design, a modification of participant 7's first design,
was made during the engineering discussion 178

Figure C-4. First design of participant 9 179
Figure C-5. Second design of participant 9 180
Figure C-6. Sole design of participant 11 181

Figure C-7. First design of participant 13 182

Figure C-8. Second design of participant 13. This was judged to be the best design produced 183
Figure C-9. First design of participant 15 184

XVI

Figure C-10. Second design of participant 15 185

Figure C-ll. Third design of participant 15 186

Figure C-12. Fourth design of participant 15. This design, a modification of participant 15's first design,
was made during the engineering discussion. The only difference is that the state of Texas
in the first screen (upper left) can be selected by clicking anywhere in the state rather than
on a button contained in the state 187

Figure C-13. First design of participant 17 188

Figure C-14. Second design of participant 17 189

Figure C-15. Third design of participant 17. This design, a modification of participant 17's second
design, was made during the engineering discussion. The designer added two panels of
buttons in the upper right corner. 190

Figure D-l. SILK Controls window 202

Figure D-2. Basic components recognized by SILK: rectangle, circle, line, and text 202

Figure D-3. A selected object with selection handles 203
Figure D-4. Editing gestures: clear, group, ungroup, new guess 203
Figure D-5. Sketched button is made up of text inside of rectangle / oval 204
Figure D-6. Check box and radio button widgets 204

Figure D-7. Text field widget 205
Figure D-8. Sketched search form 206

Figure D-9. A Caret gesture on top of some text to replace 206

Figure D-10. The search form with real text for labels 207
Figure D-l 1. The search form with values for the text fields 208

Figure D-l2. Storyboard for filling-in and clearing the Search Criteria form 209

Figure D-13. Rough sketch of houses found from the search 210
Figure D-14. Our houses screen after adding more details 211
Figure D-15. Appointment scheduling screen 212

Figure D-l6. Complete storyboard for our house search application 213

Figure D-17. Rectangle, circle, line, and text basic components 215
Figure D-18. Clear, group, ungroup, new guess, and text editing gestures 215

Figure D-19. Caret gesture for inserting typed text 215

Figure D-20. A button 216
Figure D-21. A check box 216

Figure D-22. A radio button 216
Figure D-23. A menu bar. (Note: must be drawn at upper left corner of the STLK. Sketch window.) 217

Figure D-24. A text field 217
Figure D-25. Vertical and horizontal scroll bars 217

Figure D-26. A scrolling window. (Note: can have any combination of scroll bars at left and
below) 218

Figure D-27. A palette. (Note: arbitrary graphics can be drawn in the boxes.) 218

Figure D-28. Storyboard that causes the dialog box to appear and disappear. 219

Figure E-l. Test for button rule which results in certainty value of 1 223
Figure E-2. Test for vertical scrollbar rule which results in certainty value of 1 224

Figure E-3. Test for horizontal scrollbar rule which results in certainty value of 1 224

XV11

Figure E-4. Test for new scrolling window rule with scrollbar on left which results in certainty value of
1 • 224

Figure E-5. Test for new scrolling window rule with scrollbar below which results in certainty value of
1 224

Figure E-6. Test for scrolling window rule with new scrollbar on left which results in certainty value of
1 225

Figure E-7. Test for scrolling window rule with new scrollbar on bottom which results in certainty
value of 1 225

Figure E-8. Test for check box rule which results in certainty value of 1 225

Figure E-9. Alternative test for check box rule which results in certainty value of 0.8 226

Figure E-10. Test for radio button rule which results in certainty value of 1 226

Figure E-l 1. Alternative test for radio button rule which results in certainty value of 0.8 226

Figure E-l2. Test for button panel rule which results in certainty value of 1 227

Figure E-l3. Test for check box panel rule which results in certainty value of 1 227
Figure E-l4. Test for radio button panel rule which results in certainty value of 1 227
Figure E-15. Test for menu bar rule which results in certainty value of 1 227

Figure E-16. Test for palette rule which results in certainty value of 1 228
Figure E-l7. Test for text field rule which results in certainty value of 1 228

XV111

XIX

List of Tables

Table 6-1. Demographic information and previous design experience of design participants 83
Table 6-2. Demographic information and previous design experience of engineering participants.... 84
Table 6-3. Task time and summary of characteristics of designs produced 87
Table 6-4. Rankings of designs produced during the usability test (a ranking of I is best) 91
Table 6-5. Characteristics of the post-design engineering discussion. Note that the data for participants

13 & 14 is incomplete as the video tape of that discussion was not viewable 95
Table 6-6. Editing gesture recognition data for design task 97
Table 6-7. Primitive component recognition data for design task 99
Table 6-8. Widget recognition data for design task 101
Table A-l. Survey data for designers with a visual design background 149
Table A-2. Survey data for designers without a visual design background 150
Table A-3. Mean values for survey question results 151
Table C-l. Complete demographic information supplied by design participants 172
Table C-2. Complete demographic information supplied by engineering participants 173
Table C-3. Recognition information for editing gestures, primitive components, and widget inferences

for both the tutorial and measured task 174
Table C-4. Tutorial, task, and discussion times along with characteristics of designs produced 175

XX

CHAPTER 1

Introduction

When professional designers first start thinking about a visual interface, they often
sketch rough pictures of the screen layouts. In fact, everyone who designs user inter-
faces seems to do this, whether or not they have a graphic design background. These
sketches are used to explore the overall layout and structure of interface components,
rather than to refine the detailed look-and-feel.

In addition to sketching the various screens, designers often build up storyboards
from these sketches. By numbering the screens, drawing arrows on them, and attach-
ing annotations, a designer can describe the major transitions that occur between
screens when a user manipulates the interface. Figure 1-1 illustrates a simple sketched
storyboard.

--(D_

Figure 1-1. This hand-drawn storyboard illustrates that the rectangle should rotate when the
button is pressed.

CHAPTER 1. INTRODUCTION

Designers need interactive tools that give them the freedom to sketch rough
design ideas quickly, the ability to test the designs by interacting with them, and the
flexibility to fill in the design details as choices are made [Wagner 1990]. Because cur-
rent interactive tools do not offer this support, designers are still more comfortable
sketching than using traditional palette-based interface construction tools in the early
stages of design. Additionally, research indicates that designers should not use current
interactive tools in the early stages of development since this places too much focus on
design details like color and alignment rather than on the major interface design issues,
such as structure and behavior [Wong 1992].

This dissertation investigates the design, implementation, and evaluation of a
novel interface design tool, SILK, that is intended to combine the advantages of paper-
based sketching and storyboarding with the features afforded by computer-based con-
struction tools. This chapter first discusses the goals of the research and then motivates
the creation of such a tool by describing the advantages and disadvantages of existing
design tools and methodologies. This is followed by an overview of SILK and an
extended example that highlights SILK's user interface. The chapter closes with a dis-
cussion of the contributions of the research and an outline of the rest of this document.

1.1 Research Goals
The primary goal of this work is to demonstrate that electronic sketches and story-
boards can be successfully used to prototype user interfaces in the early stages of
design. SILK [Landay 1995a], which stands for Sketching Interfaces Like Krazy,
allows designers to quickly sketch an interface using an electronic stylus. SILK retains
the sketchy look of the components. This rough representation keeps designers and
evaluators from focussing on unimportant details at this stage of design, and when
combined with the interactivity provided by storyboards, encourages productive
design discussions with other members of the design team. Figure 1-2 illustrates a
simple sketched interface screen with a window containing a rectangle and a button
below the window1.

The terms user and designer are used interchangeably in this document to refer
to the user of SILK. The term end-user is used to refer to the user of the interface that
is prototyped with SILK.

Unlike paper sketches, electronic sketches allow the designer or test subjects to
try out the design before it becomes a finished interface. This is because SILK
sketches include interactive behavior, both for recognized interface widgets and for

1. All interface sketches in this document were created using SILK unless noted otherwise in the figure caption.

1.1. RESEARCH GOALS

fl^spssglg
Stt.KSkBtch ' Jl

1
1
1

{

I

l
N

*-
1

I c^ i 1
„^^ _,.„ t

Figure 1-2. A simple sketched interface screen containing a window, a rectangle, and a button.

transitions among various screens. As a consequence, another goal of the research is to
make it easy to illustrate this behavior without requiring programming or complicated
dialogs. Figure 1-3 illustrates a storyboard that adds behavior to the interface illus-
trated in Figure 1-2. This storyboard is a SILK representation of the hand-drawn story-
board shown in Figure 1-1. At each stage of the design process the interface can be
tested by manipulating it with the mouse, keyboard, or stylus.

Traditional user interface construction tools are often difficult to use and inter-
fere with the designer's creativity. Therefore, another goal is to make SILK's user
interface as unintrusive and flexible as possible. In addition to providing the ability to
rapidly capture sketched user interface ideas, SILK allows a designer to edit the sketch

^sssss
I SILK Storyboard* ■•M

Edit Sketch;

Figure 1-3. SILK storyboard that illustrates rotating the rectangle when the button is pressed.

CHAPTER 1. INTRODUCTION

using simple gestures. Furthermore, SELK's design memory mechanisms allow
designers to review annotations made to a design over the course of a project and to
reuse portions of old designs. Thus, unlike paper sketches, SILK sketches can evolve
without forcing the designer to continually start over with a blank slate.

Most existing tools only support a small portion of the design process (see
Figure 1-4). Therefore, a final goal of this research is to concentrate on the early stages
of design, while allowing an easy transition to the tools that will be used in the later
stages. SILK's widget transformation process turns interface sketches into real user
interfaces for actual systems without re-implementation or programming. Thus, SILK
can support the entire design cycle — from developing the initial creative design to
developing the prototype, testing the prototype, and implementing the final interface.
To some extent SILK will be able to replace paper sketches and prototyping tools (e.g.,
HyperCard, Director, and Visual Basic) for designing, constructing, and testing user
interfaces in the early stages of user interface design (see Figure 1-4).

Development
Stage Brainstorming Prototyping Programming/Testing

Tool
V \ paper
^^^ sketches

SILK

HyperCard V
or Director ^^^

J /user interface J
V,^/ builders ^S

Figure 1-4. SILK can be used during all stages of user interface design, construction, and testing.

1.2 Drawbacks of Current Design Methods
User interface designers have become key members of software development groups.
To get a better understanding of their design process, I visited some of them at their
workplaces. In particular, I visited US West's Advanced Research Lab and Apple
Computer's Advanced Technology Group. I also studied the design literature, spoke
with designers at conferences, and took an electronic survey of designers (see
Chapter 2, "Informal Survey of Designers"). Using insights from these different
sources, I have drawn some conclusions about the problems with current design meth-
ods. Currently, designers use some combination of low-fidelity techniques, prototyp-
ing tools, and user interface builders. I describe these in turn.

Designers often use sketching and other low-fidelity techniques [Rettig 1994] to
generate early interface designs. Low-fidelity techniques involve creating interface
mock-ups using sketches, scissors, glue, and post-it notes. Designers use these mock-

1.2. DRAWBACKS OF CURRENT DESIGN METHODS

ups to quickly try out design ideas. Later they may use prototyping tools or user inter-
face builders, or they may hand off the design to a programmer.

Prototyping tools, such as Macromedia's Director [Macromedia 1994], Apple's
HyperCard [Apple 1993], and Microsoft's Visual Basic [Microsoft 1993], allow non-
programmers to write simple application mock-ups in a fraction of the time required
using traditional programming techniques. Prototyping tools allow designers to
quickly illustrate examples of what the screens in a program will look like. These tools
allow designers to create applications that have varying degrees of interactive behav-
ior, but due to poor performance are rarely used to produce significant commercial
applications.

Unlike user interface prototyping tools, interface builders are generally used for
producing the final application. These tools, such as the NeXT Interface Builder
[NeXT 1991] and UIM/X [Software 1990], have become invaluable in the creation of
both commercial and in-house computer applications. They allow the designer to cre-
ate the look of a user interface by simply dragging widgets from a palette and position-
ing them on the screen. Unlike prototyping tools, user interface builders then generate
code or specifications that can be linked with the application code written in a conven-
tional programming language. This facilitates the creation of the widget-based parts of
the application user interface with little low-level programming, which allows the
engineering team to concentrate on the application-specific portions of the product.
Unfortunately, prototyping tools, user interface builders, and low-fidelity techniques
have several drawbacks when used in the early stages of interface design.

1.2.1 Interface Tools Constrain Design

Traditional user interface tools force designers to bridge the gap between how they
think about a design and the detailed specification they must create to allow the tool to
reflect a specialization of that design. Much of the design [Boyarski 1994] and prob-
lem-solving [Polya 1973] literature discusses drawing rough sketches of design ideas
and solutions, yet most user interface tools require the designer to specify more of the
design than a rough sketch allows.

For example, the designer may decide that the interface requires a palette of
tools, but she is not yet sure which tools to specify. Using SILK, a thumbnail sketch
can easily be drawn with some rough illustrations to represent the tools (see Figure 1-
5). This is in contrast to commercial interface tools that require or at best encourage
the designer to specify unimportant details such as the size, color, finished icons, and
location of the palette. This over-specification can be tedious and may also lead to a
loss of spontaneity during the design process. A study using graphic designers found
that "the finished appearance of screen-produced drafts shifts [the designer's] attention
from fundamental structural issues" [Black 1990]. Thus, the designer may be forced to

CHAPTER 1. INTRODUCTION

t^AKSS Kr^Ay ^/ AM/

V_
r\r^yj) (%A^J frAf*~j'j

7\

?

Figure 1-5. Sketched application screen for a drawing editor.

either abandon computerized tools until much later in the design process or to change
design techniques in a way that is not conducive to early creative design.

One of the important lessons from the interface design literature is the value of
iterative design; that is, creating a design prototype, evaluating the prototype, and then
repeating the process several times [Gould 1985]. It is important to iterate quickly in
the early part of the design process because that is when fundamentally different ideas
can and should be generated and examined. This is another area in which current tools
fail during the early design process. The ability to turn out new designs quickly is
hampered by the requirement for detailed designs.

For example, Figure 1-5 illustrates a simple sketched interface screen. It has a
scroll bar and a window for the scrolling data. It also has several buttons at the bottom,
a palette of tools at the right, and four pulldown menus at the top. In one test using
SILK, I sketched this screen using a mouse in just 70 seconds (sketched on paper it
took 53 seconds). The use of a mouse accounts for the increase in time compared with
using pen and paper. Creating this same interface (see Figure 1-6) with a traditional
user interface builder, Gilt [Myers 1991], took 329 seconds, which is nearly five times
longer. In addition, the UI builder time does not include adding representative icons to
the tool palette due to the excessive time required to design or acquire them.

1.2. DRAWBACKS OF CURRENT DESIGN METHODS

File Edit Arrange Options 1

^
bitmap

bitmap

-^
bitmap

bitmap

bitmap

bitmap

Zoom In 1 Zoom Out | Refresh 1

Figure 1-6. The sketched application from Figure 1-5 created with a traditional user interface
builder (the Gilt tool supplied with Garnet [Myers 1990c]).

Director, HyperCard, and Visual Basic are three of the most popular prototyping
tools used by designers. Though useful in the prototyping stages, these tools come up
short when used either in the early design stages or for producing production-quality
interfaces. Besides having many of the problems mentioned previously, these tools
commonly require using a programming language since their built-in behaviors are
often insufficient for the application-level interactions a designer may wish to illus-
trate. These full-powered programming languages are inappropriate for most interface
designers, who often have a background in graphic design or art, not in programming.
In addition, Director and HyperCard cannot be used for many commercial-quality
applications due to their poor performance, which usually forces the development
team to reimplement the user interface with a different tool.

1.2.2 Paper-based Sketching Lacks Interactivity

Because of these problems with interactive tools, designers often use paper sketches
for their early creative brainstorming. Brainstorming is a process that moves quickly
between fundamentally different design ideas. Sketches allow a designer to quickly
preserve thoughts and design details before they are forgotten. The disadvantage of
making these sketches on paper is that they are hard to modify as the design evolves.
The designer must frequently redraw the common features that the design retains.

CHAPTER 1. INTRODUCTION

One way to avoid this repetition is to use translucent layers [Wong 1993; Gross
1994]. Another solution is to use an erasable whiteboard. Both of these approaches are
clumsy at best. In order to be effective, translucent layers require forethought on the
part of the designer in terms of commonality and layout of components. Whiteboards
make it hard to scale and move compound objects. Neither of these solutions help with
the next step when a manual translation to a computerized format is required, either
with a user interface builder or by having programmers create an interface using a low-
level toolkit. This translation may need to be repeated several times if the design
changes.

Another problem with relying too heavily on paper sketches for user interface
design is the lack of support for design memory [Herbsleb 1993]. Design memory is a
record of the design process: what was done at each stage and why. Paper sketches
may be annotated, but a designer cannot easily search these annotations in the future to
find out why a particular design decision was made. In my visits with designers and in
the sketches designers sent me (see Section 2.2.3), I have observed that the annotations
often occupy more space in the sketches than the actual interface design. Practicing
designers have found that the annotations on design sketches serve as a diary of the
design process, which are often more valuable to the client than the sketches them-
selves [Boyarski 1994]. Sketches made on paper are also difficult to store, organize,
and reuse.

One of the biggest drawbacks of using paper sketches is the lack of interaction
possible between the paper-based design and an end-user, which may be one of the
designers at this stage. In order to actually see what the interaction might be like, a
designer needs to "play computer" and manipulate several sketches in response to an
end-user's verbal or gestural actions. This low-fidelity prototyping technique does not
offer a realistic depiction of how the application will eventually be used.

1.3 Advantages of Sketching for Design
Despite many problems with paper-based sketching, the process of sketching has sev-
eral advantages, especially for preliminary creative design. This section first discusses
the advantages of sketching and then describes the specific advantages of computer-
based sketching.

1.3.1 Advantages of Paper-based Sketching

Several researchers have explored the advantages of using diagrams in reasoning [Lar-
kin 1987], but only recently has anyone studied the process of using sketching in the
design process. Sketching has two important advantages over other design methods: it
is a way to quickly externalize an idea and it is inherently ambiguous.

1.3. ADVANTAGES OF SKETCHING FOR DESIGN

There is only so much of a design that a designer can keep in her mind at one
time. Early on in the creative process it is important to put the idea in some tangible
form - a form that can be seen, thought about, and then changed. At this early stage, it
is important to generate many different solutions and variations to a design problem in
a short amount of time. The lack of constraints on paper-based sketching permits a
"quick and intuitive representation of concepts" [Kolli 1993]. In fact, designers will
become frustrated if they cannot externalize their mental images, as this externaliza-
tion is important for restructuring an initial design [Verstijnen 1996].

The iterative restructuring of preliminary mental images is a key step in creative
design. The ability to restructure a design and come up with different alternatives is
also supported by the ambiguity in sketches. An ambiguous drawing is one that can be
reinterpreted by the designer with a meaning that is different from the designer's orig-
inal intention. This ambiguity can result from a lack of detail or the incompleteness of
the sketch. For example, the sketched widget in Figure 1-7 can be interpreted by the
designer as either a radio button or a check box, as the designer has left the object to
the left of the text very rough - it is neither round nor square. In fact, researchers have
found that ambiguities "may trigger innate recognition search mechanisms that gener-
ate a stream of imagery useful to invention" [Fish 1990].

O VAAAA-—■

Figure 1-7. An ambiguous sketch that can be interpreted as either a radio button or a check box.

Goel noted that the ambiguity of sketches facilitates the large number of element
interpretations and transformations necessary to explore alternatives at this stage of
design [Goel 1995]. Goel observed several designers and found that with freehand
sketching, when a new idea was generated, a number of variations were quick to fol-
low, whereas with a drawing program (in this case, MacDraw) most subsequent effort
after the initial generation was devoted to detailing and refining the same idea.

Few electronic design environments support ambiguity or incompleteness,
although Henderson noted the need for it in a paper describing Trillium, one of the
early user interface builders, "The environment should support incomplete specifica-
tions" [Henderson Jr 1986]. The sketches designers sent me in response to a survey
(see Chapter 2, "Informal Survey of Designers") and the sketches I have seen in
designer's work spaces exhibit a high degree of ambiguity. For example, these
sketches contain squiggly lines to represent text and rough shapes to represent icons.

10 CHAPTER 1. INTRODUCTION

1.3.2 Advantages of Electronic Sketching

Anecdotal evidence shows that a sketchy electronic interface is much more useful in
early design reviews than a more finished-looking interface. Wong found that rough
electronic sketches kept her team from talking about unimportant low-level details,
while finished-looking interfaces caused them to talk more about the look rather than
interaction issues [Wong 1992]. The belief that colleagues give more useful feedback
when evaluating interfaces with a sketchy look is commonly held in the design com-
munity [Rettig 1994]. In addition, as with paper-based sketches, electronic sketches
keep the designer from focussing on the wrong issues.

Electronic sketches have most of the advantages described previously for paper
sketches: they allow designers to quickly record design ideas in a tangible form. In
addition, they do not require the designer to specify details that may not yet be known
or important. Electronic sketches also have the advantages normally associated with
computer-based tools: they are easy to edit, store, duplicate, modify, and search. Thus
a computer-based tool can make the design memory embedded in the annotations even
more valuable.

The final advantage of electronic sketches over traditional interface tools pertains
to the background of user interface designers. A large number of user interface design-
ers, and particularly the intended users of SILK, have a background in graphic design
or art. These users have a strong sketching background and a survey (see Chapter 2,
"Informal Survey of Designers") shows they often prefer to sketch out user interface
ideas. An electronic stylus is similar enough to pencil and paper that most designers
should be able to use one effectively with little training. In fact, the SILK usability test
(see Chapter 6, "Evaluation") showed that designers could use SILK effectively with
only a mouse after working through a short (approximately 45 minute) written tutorial.

1.4 Designing Interfaces with SILK
Designers need tools that give them the freedom to sketch rough design ideas quickly,
the capability to specify the behavior of interface elements and the transitions between
screens, the ability to test the designs by interacting with them, and the flexibility to fill
in the design details as choices are made. SILK was designed with these needs in
mind. A quick reference manual for SILK is given in Section D.10, though it is easier
to get a feel for SILK by watching a video of the system in use [Landay 1996a]. The
rest of this section reviews the major components of SILK and uses an extended exam-
ple to illustrate how it is used to sketch and edit designs, specify and test interactive
behavior, and finally to transform an interface to a more finished design.

1.4. DESIGNING INTERFACES WITH SILK 11

The functionality of SILK is partitioned across four windows: the sketch win-
dow, the controls window, the storyboard window, and the Finished window (see
Figure 1-8). The designer draws interface screens in the sketch window. These
screens may include interactive widgets and static screen decorations. The controls
window is used to perform editing operations on the sketch, change modes, save/load/
print designs, and give the designer feedback on SILK's inferences. At any point, the
designer can copy sketches to the storyboard window. The designer can then draw
arrows representing screen transitions on top of the screens. After switching to Run
mode, the resulting behavior can be tested in the sketch window. When the designer is
satisfied with the design, it can be transformed to an interface using real widgets. This
is displayed in the Finished window. The rest of this section describes these steps in
detail.

Sdlt sk*tch

£ SILK Storyboard ;g .'■^-•rffj

SILK Control* j-

Ti^« Edit Arrange Recognition Storyboard

Design Kane:::... . .

.'■.'■&■■ Sketch" ■" ' v-"-Run"::.:" V" Annotate.:.! ^Decorate /■;:'■:.■,■.■

Kw; C-UTi-V. | Widoet VYVS

^I^SSIPSPS^ 1 ,. ,- | 1
-.v.-F,,.* | S^l-T*, ! ■:;; ^^,-fe-l;: ■•■ r;,:,^'.. =:.■),:

aut^^-fW:: :. |' :is>:.*V"^v!x^-ParH-f.:| r V \ ~< | *"j < i » i- = 1

Prlalei-v» Typ«*

Figure 1-8. The SILK windows: Storyboard, Sketch, Controls, and Finished (top to bottom).

12 CHAPTER 1. INTRODUCTION

1.4.1 Sketching Interfaces

SILK enables the designer to move quickly through several iterations of a design by
using gestures to edit and redraw portions of the sketch.

1.4.1.1 Primitive Components and Widgets

Two types of pen strokes are recognized by SILK, primitive components and editing
gestures (discussed in Section 1.4.1.3). The primitive components are basic shapes that
when combined together make up a widget. For example, the button in Figure 1-9 was
created by sketching a rectangle and then a squiggly line inside of it (though the order
in which they were sketched does not matter). The other primitive components recog-
nized by SILK are circles and lines.

SILK Sketch! m.

Figure 1-9. A button composed of two primitive components: a rectangle and a squiggly line.

The system tries to recognize primitive components and user interface widgets as
they are drawn. Although the recognition takes place as the sketch is made, it is unin-
trusive and users need only be aware of the recognition results if they choose to exer-
cise the widgets. Since SILK may offer multiple interpretations for a widget, which
can be chosen from later in the design process, a SILK design can take advantage of
the ambiguity in the sketch. A complete list of the widgets SILK recognizes and a dis-
cussion of the recognition algorithm is given in Chapter 3, "Widget Recognition".

1.4.1.2 Feedback

The primitive components of the last recognized widget appear on the screen in purple
to give the designer feedback about the inference process (see Figure 1-10). In addi-
tion, the type inferred for the currently selected widget is displayed in the widget
Type field and it is also selected in the panel of widget type buttons (see Figure 1-11).

1.4. DESIGNING INTERFACES WITH SILK 13

'SILK Sketch I

]

Figure 1-10. Primitive components of recognized widgets are displayed in purple when the
widget is selected and are treated as a group for moving and growing.

 L as SILK Controls

Pile: salt Arrange Recognition Storyboard

Design Name:

; Sketch K^ Run ^Annotate ^Decorate

ijew GuessJ :

| Button

- ifext -Fi-eld i: I
BjMiea-?^«!! m

;-Wi<äget::Type:::Button'::::':.:^/:;

; :ScröiI:~£ar: ScioiJ.?;-Wi:n J:; i"Palett:a:-

] Rsääro-3utAn-ganai { CaäcJc-Box-PärisX ' |.:; Mujtipie--0bjects |

Sximi tine Type:

Rssetvängi« I ■ "i:rc.4s üAKöcognlzsä

Figure 1-11. Widget Type field and panel of buttons show that SILK has recognized a Button.

14 CHAPTER 1. INTRODUCTION

If SILK made no inference on the components in question, the designer might
group the primitive components of the widget and press the New Guess button (see
Figure 1-12) to force the system to reconsider its inference and focus on the grouped
components. If it is a widget that is not built-in to SILK's recognition system, the
designer may just leave it as a grouped object.

SILK Controls |

File:Edit Arrange Recognition Storyboard

Design Name:

-4> Sketch ■>/ Run y/Annotate ^Decorate

j-Nswf^Göess. Widget Type:

"; Click --BOX ::::: Radio-Hurt

Text-Eield

Button-Panel1 J ■B.^n.1 | Ku:,i,Ie.,CMe,tg |

Primitive Type:

Rectanc/la ' | Circle | ;. . Ling | J Unracogrd zed |

Figure 1-12. Pressing the New Guess button causes SILK to make a new widget inference,
focusing on the selected primitive component(s) or widget(s).

1.4.1.3 Editing Sketches

One of the advantages of interactive sketches over paper sketches is the ability to
quickly edit them. When the user holds down the button on the side of the stylus or the
middle mouse button, SILK interprets strokes as editing gestures instead of gestures
for creating new objects. These gestures, displayed in red to differentiate them from
drawing strokes, are sent to a different recognizer than the one used for recognizing
primitive components. The power of gestures comes from the ability to specify, with a
single mark, a set of objects, an operation, and other parameters [Buxton 1986]. For
example, deleting a section of the drawing is as simple as making an X-shaped stroke
with the stylus (see Figure 1-13).

SILK supports gestures for changing inferences, deleting, grouping, and
ungrouping primitive components or widgets. There is also a text editing gesture.
Examples of these gestures are illustrated in Figure 1-14. Sketching the caret gesture
on top of text squiggles allows the user to replace the squiggles with typed text. The
gesture can also be used for editing existing typed text or, when drawn on the back-
ground, for creating new typed text.

1.4. DESIGNING INTERFACES WITH SILK 15

SILK Sketch! •:U.

S|r 35

Figure 1-13. Drawing an X-shape with the pen button or middle mouse button held down over
objects deletes them.

"*AA7WM
&

Figure 1-14. Editing gestures for delete, group, ungroup, change inference, and text editing. The
arrows indicate a recommended direction to draw these gestures for best recognition

performance.

SILK also supports more standard interaction methods for editing sketches. For
example, an object can be selected by clicking on its outline with the left or middle
mouse buttons. Once an object is selected, it can be cut, copied, cleared, or pasted by
selecting from the Edit menu. These operations can be undone by selecting undo from
the same menu. In addition, the system displays black grow handles and white move
handles on the selected object (see Figure 1-10). Dragging on the grow handles with
the left or middle mouse button resizes the object. Similarly, dragging on the move
handles with the left or middle mouse button moves the object.

1.4.1.4 Decorate Mode

In addition to the standard widgets, designs often also contain several static elements,
decorations, or interactive elements with a custom look. Since SILK cannot recognize
these objects, the system has a separate decoration mode for sketching them without
running the widget recognition engine. The designer can switch from Sketch mode to
Decorate mode by selecting the Decorate radio button in the SILK controls window

16 CHAPTER 1. INTRODUCTION

(see Figure 1-15). For example, Figure 1-16 shows a "blob" object that was drawn in
decorate mode and added to the sketched interface containing the button. Decorations
are rendered in a dark green to differentiate them from widgets. Decorations are
another way to create ambiguous sketches which have no system-maintained interpre-
tations, which is a desirable property in the early stages of design (see Section 1.3.1).

*-»! • SILK Controls .
File Edit Arrange Recognition Storyboard

....'■Design. Name:: :.,..;.■'!

li

V Sketch; .■.■:-:.s^:-..;Suh".'...;'; i ^Annotate■■:]'■ ;'^Decorate-[■.■.'.'..'■

II Na ;<*™,| Widget Typo: ;.

1 : Chock-Box | Rddio~3utton | ::M<;mi-Eai. 1
1
1 .

k | : Scroi: -Bar ■ | Scro-ll-VJin. | Paiatte

button-Panel | Radio-Button-Pane-| : Check-Box-i?ün&l | li-_J.tiple_Ob"j&c.ts

JS32SE

Köetancde

Primitive Type:

| Circle | Lina | Texi | Unrecognis&dj.

.,,,, -,.. -a-i-K»r •" -'n;-^^!:--'-!™--™--,-- • .«~,~.-,~~.-, . „r..,,...,™™,.~..,J.;,. ,,,r,., „.....,,,;„,,

Figure 1-15. Pressing the Decorate radio button switches SILK to Decorate mode.

Figure 1-16. A "blob" drawn in Decorate mode has been added to the interface in Figure 1-9.

1.4. DESIGNING INTERFACES WITH SILK 17

1.4.1.5 Annotate Mode

SILK also supports a mode for annotating sketches with drawn, written, or typed com-
ments. The annotation layer, which is drawn in blue, can be displayed or hidden by
toggling the Annotate radio button (see Figure 1-17) Figure 1-18 illustrates some
annotations that have been added to the example illustrated in Figure 1-16.

f* ,~nfl - , . - ,7;^. w ^"'-"S^r^w^' .v^,»™^™..,^,.^^^.™^^.^^^.,.^,^. üsrtsra

-1 SILK Controls ' - ' ' " ' " |

File Edit Arrange Recognition Storyboard : p

Design Haute: blob . |

V ;SketCh:.:;''■'■'.; :^r,;;: 'B.VXi ''". . . ^ahnotate-;: ;; ^Decorate ;\

!■

'.';■, :Me*:'iSae'SS:| :;^0:.U:;:.:>

V- Buttern

Widget Type: :

1 ■ :•Check-Box j Kadio-ButxoTi ■- | '., :-äisnü-3&r |

::':';;:;;: J/^^Teic-S'ijeläL:. :ri:m^Mmm\ '•"^ro-li^Win 1. »aie-.t* 1

"■'■ Buttcri:-FaiiSl: | Radi = --£xitco:i-^*nel|, Check-Box-Panei | aul;Siple_;Ofa-jacte |

. Racr.angle

:;;;:v;::.:;i:
;;;;''..;:

;:-:;-.pri3iiitive Type:

| Eircio | Lino , | lax'. | Drirtä=c<?..i=od | - ■

m.

Figure 1-17. Pressing the annotate radio button switches SILK to Annotate mode.

Figure 1-18. Annotations can be drawn, written, or typed and are displayed in blue.

18 CHAPTER 1. INTRODUCTION

1.4.2 Specifying Behavior

Easing the specification of the interface layout and structure solves much of the design
problem, but a design is not complete until the behavior has also been specified.

1.4.2.1 Run Mode
Run mode allows a designer or end-user to test an interface design. It can be turned on
at any time by selecting the Run radio button (see Figure 1-19). For example, as soon
as SILK recognizes the button shown in Figure 1-9, the designer can switch to Run
mode and operate the button by selecting it with the stylus or mouse. The button will
highlight when held down (see Figure 1-20). The highlight goes away if the mouse is
moved out of the button or if the mouse is released over it. As with button widgets
included with standard interface builders, this feedback indicates that the button will
perform an action if the mouse is released over it. The other widgets recognized by
SILK have similar interactive behaviors (see Section 3.3 for illustrations and descrip-
tions of these behaviors). Although only objects recognized by SILK offer this feed-
back, arbitrary sketched objects may still need to have interactive behaviors attached to
them. This is accomplished using storyboards.

\ SILK Controls %

File; iEdit Arrange Recognition Storyboard

Design; Marne: -blob

Sketch ^ : Hun :>/Annotate ■ ^Decorate

Midget Itype:

; B.k;.o -?*--el | ;adla-a^t^p^t,l | "Aeck-^x^-eJ. | fel^Is ;sb;.eccs I

Primitiv» Typ«:.

J. J. Ü

Figure 1-19. Pressing the Run radio button switches SILK to Run mode.

Figure 1-20. Buttons are highlighted when the mouse is held down on them in Run mode.

1.4. DESIGNING INTERFACES WITH SILK 19

1.4.2.2 Storyboarding

Unfortunately, the behavior of individual widgets is insufficient to test a working inter-
face. For example, SILK knows how a button operates, but it cannot know what inter-
face action should occur after a user presses the button. This is specified using
storyboards. Storyboards use the sequencing of screens to allow the specification of
the dynamic behavior between widgets and the basic behavior of new widgets or appli-
cation-specific objects, like a dialog box appearing when a button is pressed. Screen
sequencing is expressed by drawing arrows in the storyboard window from objects to
screens that should appear when the object is clicked on with the mouse (see Figure 1-
3). Storyboards are a natural representation, they are easy to edit, and they can easily
be used to simulate functionality without worrying about how to implement it.

The interface illustrated in Figure 1-16 can be copied to the storyboard window
by selecting copy screen to storyboard from the storyboard menu. The original
screen can then be modified in the sketch window - in this example the blob is made
larger. This process can be repeated until there are three screens in the storyboard
window, as illustrated in Figure 1-21. Then, arrows can be drawn from the buttons in
each screen to the next screen, as shown in Figure 1-22. Now, switching to Run mode
and clicking on the sketched button will cause SILK to make screen transitions in the
sketch window. The blob will appear to grow and then shrink back to its original size.

r: SILK Storyboard g; .
Mit Sk.tch

e Q Q

Figure 1-21. Three versions of the screen illustrated in Figure 1-16 are copied to the storyboard.

Figure 1-22. Arrows drawn on the storyboard indicate that when the button is clicked repeatedly,
the blob should grow twice and then the sequence should start over.

20 CHAPTER 1. INTRODUCTION

1.4.3 Iterative Refinement
The philosophy behind SILK is that designers are never forced to give more detail than
they wish to, but they can add more detail as these specifics become known. For exam-
ple, the button labels shown so far have been simple text squiggles. This is only suffi-
cient for a short time. Eventually, the designer may wish to specify handwritten labels
and later, typed labels. This progression is illustrated in Figure 1-23. Note that there is
no OCR done in this example; the designer first sketches squiggles, then replaces those
with written labels1, and later replaces the written labels with typed labels using the
caret gesture. SILK recognizes all three versions as text labels and properly infers that
they are part of a radio button panel.

O bcb'cj O iTcJic

V
Q bold O italic

Figure 1-23. Iterative refinement of text labels: squiggle to handwritten to typed.

1.4.4 Transformation
When the designer is satisfied with the interface, SILK can create a new window that
contains real widgets and graphical objects that correspond to those in the rough
sketch. These objects can take on the look-and-feel of a specified standard graphical
user interface - SILK currently supports the Motif look-and-feel. The transformed
interface is only partially finished since the designer still needs to finalize the details of
the interface (e.g., textual labels, colors, and alignment). At this point, programmers
can add callbacks and constraints that include the application-specific code to com-
plete the application. Figure 1-24 illustrates the transformed version of the third screen
illustrated in Figure 1-22. Notice that the button has a generic label and the blob has
been transformed as is.

1. The current version of SILK does not allow replacing squiggles with handwritten text that will be recognized as
text. The code supports [- and]-shaped gestures to perform this operation, but it is not fully implemented.

1.4. DESIGNING INTERFACES WITH SILK 21

Figure 1-24. Transformed version of the third screen from the storyboard shown in Figure 1-22.

1.4.5 Mode Feedback

The proceeding overview highlighted that SILK's interface is very modal. There are
four modes: Sketch, Decorate, Annotate, and Run. Knowing which mode the system is
currently in does not appear to be problematic as SILK changes the drawing cursor to
indicate the mode and the color of the ink is different for the three drawing modes
(black for Sketch mode, green for Decorate mode, and blue for Annotate mode).

1.4.6 Data Model

The SILK data model is quite simple. A screen is a sketch that is created and edited in
the SILK sketch window. It represents what is to be shown on the display to the end-
user when the application being designed is running. A design is a collection of
screens that are stored in the SILK storyboard window. Designs are saved to the disk
using a filename. Another version of a design is simply a design saved under a differ-
ent filename.

22 CHAPTER 1. INTRODUCTION

1.5 Design Range
SILK is oriented towards the design of the user interfaces found in graphical editors
and simple forms-based applications. Therefore, it recognizes and supports the interac-
tive behavior of the standard UI widgets (e.g., buttons, text fields, scroll bars, and
menus). SILK is not limited to this style of interface, as SILK's storyboarding compo-
nent allows screen transitions to occur when arbitrary graphical objects are clicked
with the mouse. A designer can use this mechanism to simulate interfaces that are not
dominated by either the structure or behavior of the standard widgets. This technique
was used by several designers during the SILK usability tests (see Chapter 6, "Evalua-
tion") to support new widgets that were not built-in to SILK. Since SILK is mainly a
tool for exploring and communicating interface ideas in the early stages of design, it is
not necessary to support all possible interactive behaviors.

1.6 Implementation
SILK was written entirely in Common Lisp and runs on both UNIX workstations and
the Apple Macintosh. SILK can be used with a mouse or a Wacom tablet. It is imple-
mented using the Garnet User Interface Development Environment [Myers 1990c].
The rest of the dissertation details the implementation of the algorithms used by SILK.

1.7 Thesis and Contributions
The thesis postulated by this dissertation is that electronic sketches and storyboards
can be effectively used to prototype user interfaces in the early stages of design. The
contributions of the research include the following:

Concepts and Techniques:

•A new methodology, electronic sketching, for designing user interfaces.

•A method for illustrating the behavior of a user interface visually, using story-
boards, without conventional programming.

•Feedback techniques for showing how the storyboard caused the current interface
screen to become active and editing techniques for manipulating the storyboard
screens and transitions.

•The automatic recognition of sketched user interface components.

•The transformation of sketched interface screens to operating user interfaces that
use real widgets in a standard look-and-feel.

1.8. DISSERTATION OUTLINE 23

Artifacts:

•The first tool designed for use during the early phases of interface design by pro-
fessional user interface designers. In addition, through screen transformations,
SILK also supports the later phases of the interface design cycle. Finally, the
implementation is suitable for use by designers wishing to experiment with this
new methodology.

•A widget recognition algorithm that can be applied to other domains.

Experimental Results:

•A survey of designers which illustrates that designers are dissatisfied with the
existing tools and methods used in the early stages of user interface design.

•An evaluation that shows that SILK is usable for quickly designing user inter-
faces and that designers are excited by the prospects of using electronic story-
boarding instead of programming for illustrating interactive behaviors. The
evaluation also showed that SILK allowed designers to effectively communicate
their design ideas to engineers.

•A demonstration of successful uses for sketch-based interfaces.

1.8 Dissertation Outline
The rest of this dissertation describes how SILK functions and how it can be used
effectively by user interface designers. To ensure that the system would work well for
its intended users, I took an informal survey of professional user interface designers to
determine the techniques they now use for interface design. The results of the survey
and a discussion of how these results were used in the design of SILK are presented in
Chapter 2.

The next three chapters describe SILK's technical details. Chapter 3 describes
the algorithm used to recognize sketched widgets. Chapter 4 contains the implementa-
tion details necessary to support electronic storyboards. Chapter 5 discusses annota-
tions, sketch transformations, and other supporting features for the later stages of the
design process.

Chapter 6 discusses a descriptive evaluation of SILK with six designers and six
engineers which showed designers could effectively use SILK to design user interfaces
and that they saw a lot of potential for electronic sketching and storyboarding. The
testing also illustrated that SILK allows designers to effectively communicate design

24 CHAPTER 1. INTRODUCTION

ideas to engineers. In fact, the designers and engineers were able to discuss designs
and make changes to them while the engineers were present.

Chapter 7 contains a review of the work related to this research. This is followed
in Chapter 8 by a discussion of some new research problems that building SILK has
brought to light. Finally, Chapter 9 summarizes the dissertation and reviews its contri-
butions.

CHAPTER 2

Informal Survey of Designers

One of the basic tenets of human-computer interaction is the importance of user-cen-
tered systems design [Draper 1986]. This methodology requires knowing who the
intended users of the system are, involving them in the design, keeping their needs in
mind during design and implementation, and having these users test prototypes of the
system throughout the design process. As mentioned earlier, SILK was designed for
user interface designers, particularly those with an art or graphic design background.
To determine the needs of this user population, I followed three related courses of
action:

1) I read the design literature and on-line design discussion groups.

2) I spoke with designers and observed their designs and work spaces.

3) I surveyed designers with a written questionnaire.

The first two research items are discussed elsewhere (see Sections 1.2, 1.3, and
7.1). This chapter contains a description of the third item, the written questionnaire. It
opens with an overview of the methodology used and is followed by some quantitative
and qualitative results. The last section contains a discussion about what these results
imply for a user interface design tool and how these results were used in the design of
SILK.

2.1 Methodology

To help ensure that SILK would work well for its intended users, I took an informal
survey of professional user interface designers to determine the techniques they now
use for interface design. To carry out this survey, I took the following steps:

1) I wrote the initial questionnaire

2) I piloted the questionnaire with three designers

25

26 CHAPTER 2. INFORMAL SURVEY OF DESIGNERS

3) I revised the questionnaire based on the results of the pilot

4) I posted the questionnaire to the Internet's VISUAL-L mailing list1

5) I analyzed the returned questionnaires

Since the questionnaire was posted to a mailing list, the individuals who
responded are self-selected. This is why I term the survey "informal." Nevertheless,
these results were useful for giving some direction to the original design.

2.1.1 What Was Asked

The designers were asked about their background and the tools and techniques they
used in the early stages of user interface design. The questionnaire asked them what
they liked and disliked about paper sketching, and what they liked and disliked about
electronic tools. The designers were also given a description of SILK and asked to
comment on the strengths and weaknesses of such a tool. In addition, the designers
were asked to estimate the percentage of time they spent sketching different types of
interface elements. Finally, I asked the designers to send me sketches that they had
made early in the design cycle of a user interface. The designers were assured that
these sketches would be kept in confidence. The complete questionnaire is included in
an appendix (see Appendix Section A.l).

2.2 Survey Results
The survey was first posted on September 4, 1994 and the last response was received
on October 30, 1994. A total of 31 designers responded to the survey. There were
approximately 3002 subscribers to the list at that time. A summary of the data from the
returned questionnaires is included in the appendix (see Appendix Section A.2).

2.2.1 Background of Designers

The designers surveyed have an average of about six years experience designing user
interfaces. They work for companies from around the world that focus on areas such as
desktop applications, multimedia software, telephony, and computer hardware manu-
facturing. Respondents who reported having backgrounds in architecture, art, graphic
design, industrial design, or visual communications were grouped together and termed
visual designers. Eighteen (58%) of the designers had this visual design background

The VISUAL-L mailing list discusses the design of visual interfaces and is maintained at Virginia Tech. Univer-
sity and can be accessed by mailing to the following email address: listserv@vtvml. cc. vt. edu
This is an upper-bound estimate made by the mailing list maintainer Andrew Cohill (cohill@bev.net) in
October of 1996: "back then my hazy memory recalls less than 300 people." Cohill estimates that there are
approximately 950 subscribers as of October 1996.

2.2. SURVEY RESULTS 27

and thirteen of the respondents did not. Eleven of the thirteen non-visual designers had
backgrounds in engineering or psychology. Though not entirely accurate, the thirteen
designers without a visual design background are termed engineers. All of the respon-
dents are termed designers. As visual designers are the intended users of SILK, this
chapter focuses on their responses to the questionnaire. The results for engineers are
similar and are shown after the visual design numbers in the following sections. These
numbers will only be compared in the cases where they are substantially different3.

2.2.2 Why Designers Sketch

Almost all of the respondents (100% of the visual designers and 85% of the engineers)
sketch in the early stages of user interface design, whereas only about half (56% of the
visual designers and 62% of the engineers) also use software tools at this stage. The
survey tried to collect some qualitative feedback both on why designers sketch at this
stage and why they do not always use electronic tools.

The speed of sketching was the most commonly cited reason (by 50% of the
visual designers and 62% of the engineers) for not using software tools at this stage.
Both groups claimed that user interface tools, such as HyperCard or user interface
builders, would waste their time during this phase. One designer stated that in the early
stages of design "iteration is critical and must happen as rapidly as possible — as
much as two or three times a day." The designer said that user interface builders
always slowed the design process, "especially when labels and menu item specifics are
not critical." This comment is consistent with that of another designer who claimed
paper was more useful in the early stages when they "did not understand the problem
well" and wanted to try several different ideas. Most of the designers also cited their
familiarity with paper as a graphic designer. The use of pencil and paper was described
as intuitive and natural.

The designers also noted the importance in leaving the design in a rough state.
This keeps the designer from focusing on unimportant details, as illustrated by com-
ments such as: "[sketches are] crude enough so that I don't spend time trying to work
on details that the design is not ready for" and "paper is the most versatile tool in the
early stages of an interface design, when the 'tyranny of the pixel' is the furthest thing
from the designer's mind." Another important motivation for keeping the design
sketchy is to keep observers from getting the wrong impression of a design, as illus-
trated by comments such as: "there seems to be an implied commitment to something
once it hits the screen," "it is important that the client 'sees' the work as ideas and not

3. I only discuss these numbers when the absolute difference between them is more than 30 percentage points. I am
not implying that the numbers differ in a statistically significant way. This is mainly due to the fact that the
respondents to the questionnaires were not randomly selected and the sample size is rather small. Thus, statisti-
cal analysis may not be appropriate.

28 CHAPTER 2. INFORMAL SURVEY OF DESIGNERS

the final design - therefore the work should have that sketchy feel to it," and "if you
use the computer you face the problem of 'over concretization' - that is, even the most
flippant ideas look as if they are 'real interface.' The problem looks to be solved, when
in fact it is not at all." Keeping details from getting in the way of both the designer and
evaluators was cited by 22% of the visual designers and 8% of the engineers.

Other reasons cited for sketching included its ease of use and versatility (cited by
33% of the visual designers and 23% of the engineers), and the collaboration and port-
ability afforded by sketching on paper and whiteboards (cited by 33% of the visual
designers and 62% of the engineers). Finally, 39% of the visual designers and 23% of
the engineers cited the perspective and ease of organization that sketches provided.

In summary, sketching was cited as more useful at this stage because it is good at
"catching ideas quickly," it is inherently ambiguous, and it is portable.

2.2.2.1 Electronic Tools Designers Use

The designers gave two common reasons for using computer software in these early
stages. First, software permits adding dynamic behavior that can be tested with users.
Second, computer tools, specifically user interface builders, allow the designer to pro-
duce an artifact that may be used in the final design.

The designers used a wide range of software-based design tools in their work.
This section tries to give a breakdown of the most common tools and shows some sig-
nificant differences between those with and without a visual design background. Most
of the designers surveyed (83% of the visual designers and 69% of the engineers) have
used HyperCard, Director, or Visual Basic during the prototyping stage of interface
design. Some also used high-powered user interface builders. The most commonly
cited were TeleUSE [Thomson Software Products 1996], DevGuide [Sun 1991],
NeXT Interface Builder [NeXT 1991], and X-Designer [1ST 1996]. The designers
listed 19 different user interface builders.

Macromedia's Director was the most common tool cited by those with a visual
design background (61% of the visual designers and only 23% of the engineers),
whereas Apple's HyperCard was more commonly used by engineers (69% of the engi-
neers and only 33% of the visual designers). This difference between Director and
HyperCard may be explained by their intended uses. Director was intended for build-
ing multi-media presentations, but it is fairly general and allows designers to paint,
draw, and animate custom objects easily. In fact, everything is custom, as there are no
built-in objects. This freedom is appealing to designers who are trying to give a flavor
of an interface in the early stages of design.

2.2. SURVEY RESULTS 29

In contrast, HyperCard is intended for building small applications based on but-
ton clicks. The drawing interface is fairly constrained and thus it is not as easy to cre-
ate new objects, although there is a palette of standard widgets to choose from. In
addition, HyperCard applications rely much more on its scripting language, Hyper-
Talk, than Director presentations rely on its Lingo language. Designers with a back-
ground in graphic design or art typically do not have, nor do they wish to learn,
sophisticated programming skills. For example, one designer claimed that Director
was the "best prototyping tool, but [it] relies too heavily on code for simple prototyp-
ing."

The designers often reported that Director was only useful for "movie-like" pro-
totyping, i.e., as a tool to illustrate the functionality of the user interface without the
interaction. In addition, the designers disliked Director because it lacked a widget set,
the designs could not be used again in the final product, and every control and system
response had to be created from scratch. HyperCard was also cited for its lack of some
necessary user interface components.

Visual Basic (used by 33% of the visual designers and 23% of the engineers) and
user interface builders (used by 44% of the visual designers and 54% of the engineers)
were used by both groups. It is possible that if the survey were done now, a larger per-
centage of designers would be using Visual Basic (VB) than HyperCard or Director, as
VB seems to have become quite popular in the design community. This may be due to
three reasons: 1) there are a large number of third-party widgets and controls (VBXs)
available for VB, 2) it integrates a user interface builder with an interpretive language
that is considered easy-to-learn compared with most traditional industrial program-
ming languages (e.g., C), and 3) Microsoft's Windows operating system currently
dominates the computer market.

The designers complemented the user interface builders, such as TeleUSE and
the NeXT Interface Builder, on their complete widget sets and the fact that the designs
could be used in the final product. Though, the difficulty of learning to use the user
interface builders, especially those with scripting languages, was considered a draw-
back. In fact, "hard to learn" programming or scripting languages seemed to be a
major concern for all of these systems. One designer said that interface design tools
require "too much programming to do anything innovative."

2.2.3 What Designers Sketch

Besides finding out what tools designers use and why they prefer sketching to com-
puter-based tools, it was also important to see what types of sketches designers made.
In response to my request for sketches, I received four design sketches. These sketches
were fairly rough and ambiguous. They contained squiggles to represent text and
rough icons that acted as buttons. In addition many of the sketches were covered with

30 CHAPTER 2. INFORMAL SURVEY OF DESIGNERS

/fC
^t)iw

Figure 2-1. Sketch of a user interface for a voicemail application. Reproduced by permission of
Annette Wagner, Sun Microsystems.

hand-written annotations. Figure 2-1 is an example of one of the sketches I received; I
was given permission to reproduce this sketch. As mentioned previously, the designers
were assured these sketches would be kept in confidence, so the rest are not repro-
duced here. The remainder of this section reports the mean percentages of time that
designers said they spent sketching particular types of user interface elements.

The survey showed the designers spent much of their time sketching the stan-
dard widgets that are found in a toolkit: buttons, scroll bars, etc. (26% of visual
designer's time and 30% of engineer's time). Arbitrary static graphics and decorations
were the next most commonly sketched elements (25% of the work of visual designers
and 15% of the work of engineers). The written comments showed that designers were
unhappy with tools that did not allow them to add these decorations easily. Interactive
graphical objects (4% of visual designer's work and 12% of engineer's work) and mul-

2.3. DESIGN IMPLICATIONS FOR SILK 31

timedia applications that use video and sound (9% of visual designer's work and 12%
of engineer's work) were less commonly sketched.

The survey also showed that designers occasionally need to design controls with
custom looks or behaviors (20% of the work of visual designers and 12% of the work
of engineers). Often these are widgets whose behavior is analogous to that of a known
widget. For example, designers frequently need to draw a new icon and specify that it
should act like a button. Occasionally, designers need to sketch a widget that has an
entirely new behavior. Finally, the "other" category was responsible for the remaining
design time (16% of the time of visual designers and 18% of the time of engineers).
This category included designing the layout of widgets and designing interactions that
span multiple widgets or windows.

Several of the written comments show that designers often illustrate sequences of
system responses and annotate the sketches as they are drawn. One designer claimed
that an annotated sketch could be presented to management and tested with users
before building a prototype. This is a simple form of storyboarding. Another said that
"storyboarding is extremely important to interface design. It's a quick way to show a
user/client how they would perform search, selection, and navigation on an interface/
system without having the system engineers and programmers actually implement the
design into a system."

2.2.4 Interest in SILK

The designers reacted favorably to a short description given to them about SILK.
Some were concerned that it was not really paper and that they might need to get
accustomed to it. Others wanted assurances that the system would share the portability
they currently have with paper. The comments were positive overall. The designers felt
the described system would allow quick implementation of design ideas and it would
also help bring the sketched and electronic versions of a design closer together. In
addition, the designers were happy with the ability to quickly iterate on a design and to
eventually use that design in the final product. All but three (83% of visual designers
and 100% of engineers) expressed a willingness to try such a system.

2.3 Design Implications for SILK
The primary purpose of the informal design survey was to confirm the original design
ideas for SILK and to focus the research on areas that were not originally anticipated.
For example, until I visited designers in their work places and took the design survey, I
did not even consider the support for annotations of sketches.

32 CHAPTER 2. INFORMAL SURVEY OF DESIGNERS

One of the most important results of the survey was in highlighting the impor-
tance of sketching in two different respects. First, designers believe the physical action
of sketching is quicker and encourages creativity during this early design phase. Sec-
ond, the roughness embodied in a sketch keeps both the designer and evaluators from
focussing on details too early in the design process. This result confirmed two major
design decisions: the choice of a sketch-based interface for design instead of a palette
of sketchy widgets and the decision to keep the design rough rather than cleaning it up
after each widget recognition.

Another important result of the survey was the fact that many of the designers
seemed to use software-based tools only because of the interactivity or the re-use they
provided. This confirmed that interactive behavior should be an important part of any
new tool and that the entire design process could be improved if SILK had the ability
to hand off the design to another tool later in the design process (see Section 5.2).

Finally, by finding out that designers spent a lot of their time sketching common
toolkit widgets and static graphics, SILK could be designed to support these elements
best, yet still allow less common elements to be used. Since many designers already
use paper-based storyboards, need to support interaction, and occasionally design wid-
gets with new behaviors, electronic storyboarding can be used to support these needs
(see Chapter 4, "Storyboarding").

CHAPTER 3

Widget Recognition

Allowing designers to sketch on the computer, rather than on paper, has many advan-
tages, as discussed in Chapter 1. Several of these advantages cannot be realized with-
out software support for recognizing the interface widgets in the sketch. Having a
system that recognizes the drawn widgets gives the designer a tool that can be used for
designing, testing, and eventually producing a final application interface. SILK's rec-
ognition engine identifies individual user interface components as they are drawn,
rather than after an entire sketch has been completed. This way the designer can test
the interface at any point without waiting for the entire sketch to be designed and rec-
ognized. This is key for a tool that supports iterative design. In fact, I observed sub-
jects trying out new ideas and immediately testing them during usability testing (see
Chapter 6, "Evaluation").

This chapter gives an overview of the widget recognition process, describes how
primitive components are recognized, explains how the rules system is used to com-
bine primitive components into widgets, and finishes with some ideas on how to learn
new rules.

3.1 Recognition Overview
Working within the limited domain of common 2-D interface widgets (scroll bars, but-
tons, pulldown menus, etc.) facilitates the recognition process. This is in contrast to the
much harder problems faced by systems that try to perform generalized sketch recog-
nition or beautification [Pavlidis 1985]. A rule system, which contains basic knowl-
edge of the structure and make-up of user interfaces, allows SILK to infer which
widgets are included in the sketch.

33

34 CHAPTER 3. WIDGET RECOGNITION

Primitive Component
Recognition

(gesture recognizer)

I
Spatial Relationship

Detection

I
Widget

Recognition
(rule system)

Figure 3-1. Phases of SILK's widget recognition algorithm.

The widget recognition algorithm is broken into three phases, as illustrated in
Figure 3-1. First, SILK tries to recognize the primitive components in the sketch as
they are drawn. The primitive components are basic shapes that when combined
together make up a widget. For example, the scroll bar in Figure 3-2 was created by
sketching a tall, thin rectangle and then a small rectangle (though the order in which
they were sketched does not matter1). After recognizing a primitive component, the
system looks for spatial relationships between the new component and other compo-
nents in the sketch. Finally, the result is passed to a rule system which tries to combine
that component together with related components to form a more complex widget. The
rest of this chapter describes these three recognition phases.

1. The arrows indicate a preferred starting point and direction of the stroke for each primitive.

3.2. RECOGNIZING WIDGET COMPONENTS 35

Figure 3-2. A vertical scroll bar composed of two rectangles.

3.2 Recognizing Widget Components
The recognition engine uses Rubine's gesture recognition algorithm [Rubine 1991b;
Rubine 1991c] to identify the primitive components that make up an interface widget.
The primitive components recognized by SILK include rectangles, circles, lines, and
squiggles (which represent text). These components are illustrated in Figure 3-3. The
arrows indicate a preferred, but not required, drawing direction. Each of the primitive
components of a widget are trained by example using the Agate gesture training tool
[Landay 1993]. Each primitive component was trained with 15-20 examples. The
examples varied in size and drawing direction.

L /SAA$NA/\,A/

Figure 3-3. Primitive components recognized by SILK - rectangle, circle, line, and a squiggle
that represents text.

36 CHAPTER 3. WIDGET RECOGNITION

3.2.1 Rubine's Algorithm

Rubine's algorithm uses statistical pattern recognition techniques to train classifiers
and recognize gestures. These techniques are used to create a classifier based on the
features extracted from several examples. In order to classify a given input gesture, the
algorithm computes the distinguishing features of the gesture and returns the best
match with the learned gesture classes. The following features of the gesture are used:

•cosine and sine of initial angle with respect to the x axis

•length of the bounding box diagonal

• angle of the bounding box diagonal

•distance between first and last point

•cosine and sine of angle between first and last point

•total gesture length

•total angle traversed

Rubine's original algorithm also computed the maximum speed (squared) and
the path duration, but these two temporal features were not used as Rubine found they
were not very useful [Rubine 1991a].

3.2.1.1 Limitations of Rubine's Algorithm

The algorithm currently limits SILK to single-stroke gestures for the primitive compo-
nents. This means the components must be drawn with a single stroke of the pen (i.e.,
not lifting up the pen or mouse button during the stroke). A single stroke of the pen
was used to draw each of the rectangles that comprise the scroll bar in Figure 3-2.

There are several possible solutions that overcome this limitation. The first solu-
tion takes advantage of the observation that single-strokes only appear to be a limita-
tion for rectangles. That is, most of the other shapes are commonly drawn with only
one stroke of the pen. Therefore, the low-level gesture recognizer could be trained with
L and U shapes, as seen in Figure 3-4. By combining recognized line gestures together
to form these shapes and also combining recognized L- and U-shaped gestures
together with lines, the system could then recognize rectangles made with 1,2, 3, or 4
strokes.

Another solution to the multi-stroke problem is to modify the low-level recog-
nizer to support multiple strokes. One way to do this is to add a time-out mechanism to
the gesture interactor supplied by Garnet [Landay 1993]. The interactor currently
sends points to the recognizer as soon as the pen is lifted. Instead, it could wait until
the pen has been lifted for a specified amount of time. If the user starts making new
strokes before the time-out has passed, then it is assumed that the new stroke is a con-

3.2. RECOGNIZING WIDGET COMPONENTS 37

Figure 3-4. Partially completed rectangles made up of L and U shapes.

tinuation of the previous stroke. Eventually, the time-out will be passed without a new
stroke. At that point, the previous set of strokes can be ordered in some logical way
(for example, by finding the closest strokes to the endpoints of a given stroke) and
passed as one set of points to the unmodified single-stroke gesture recognizer.

The main difficulty with a time-based scheme is in picking a time-out value that
is not confusing to the user - it should not force unrelated strokes to be grouped
together and likewise it should not separate related strokes. Other researchers have
used a scheme in which the time-out is proportional to the size of the previous stroke.
They have indicated that a more complex scheme may be necessary [Apte 1993b].
Another problem may be in ordering the points in a way that does not undermine the
predictive ability of the features used by Rubine's algorithm.

The other major limitation of Rubine's algorithm is the fact that it does not
account for variations in size or rotation. In SILK, rotations are only a problem for
editing gestures, but the lack of support for variations in size is problematic in recog-
nizing both editing gestures and the primitive components. One way to deal with this
limitation is to train gestures of many varying sizes. The problem with this approach is
that it leads to a recognizer that performs better on the average sizes, but not well on
the outliers. To work around this in SILK, I broke up some of the primitive compo-
nents into multiple classes. For example, rectangles are divided into rectangle-
large, rectangle-small, rectangle-very-small, and rectangle-thin. All of
these are mapped into the type rectangle as soon as they are returned from the low-
level gesture recognizer. Rubine's algorithm tends to do much better when the gestures
are organized in this manner.

38 CHAPTER 3. WIDGET RECOGNITION

3.2.2 Training from Corrections

One innovation in SILK is the ability to learn new examples of gestures representing
the primitive components during regular use of the system. This feature was added
after some early user testing revealed that when the system made a recognition error
on a primitive component, the user was forced to delete the object and then redraw it.
Previously, the type of the recognized component was only displayed in the Primi-
tive Type field. In response to this problem I added a panel of buttons in the SILK

controls window (see Figure 3-5). These buttons represent the primitive compo-
nents. When SILK recognizes a primitive component, the appropriate button is high-
lighted. If the system misrecognizes the component, the user can easily click on one of
the alternative buttons and SILK will use that new type definition instead.

SILK Controls

File Edit Arjrange Recognition Sfcoryboard

Design Hans:

■O- Sketch: :.'■"<>: Run wAnnotate \sDecorate

Guess| ->-•; "■ widget Type: ;

Batten I ■■ Check-Sex I . .Radio-Button

.Text-Field | Palette

Primitive Type; Rectangle

| ^Rectangle __ Circle | Line | ; Text } Unrecognized |

Figure 3-5. Primitive type buttons (bottom) in STIX. controls window.

The next improvement in SILK's recognition mechanism was taking advantage
of the user's correction to improve future inferences. After passing the points compos-
ing the corrected stroke, the correct gesture name, and the current gesture classifier to
the gesture training routines, SILK produces a new classifier which will more accu-
rately recognize the user's strokes. As implemented, the system performs this retrain-
ing transparently to the user. The new classifier takes effect immediately, but is not
saved to disk until the user next saves her design. The new classifier is saved to the
user's home directory and the system looks for one of these personalized classifiers
each time it starts up.

3.3. SILK WIDGETS 39

3.3 SILK Widgets

The following set of figures illustrate1 the complete set of widgets SILK recognizes
and the feedback these widgets display when manipulated in Run mode. SILK also
recognizes vertical and horizontal sequences of buttons, check boxes, and radio but-
tons as panels.

Figure 3-6. A button.

vW/w

Figure 3-7. Buttons are drawn in reverse video when the mouse button is held down over them.
The feedback is removed when the mouse is released.

'ivV^
Figure 3-8. A check box.

Figure 3-9. Check boxes display an X-shape in the box when they are selected with a mouse click
on the box. Another click on the box will deselect it and turn the feedback off.

Figure 3-10. A text field. Note: the text field currently offers no Run mode feedback.

1. Note that these sketches were not generated with SILK to allow the easy addition of arrowheads.

40 CHAPTER 3. WIDGET RECOGNITION

Figure 3-11. A radio button.

Figure 3-12. Radio buttons fill the circle when they are selected with a mouse click on the circle.
Another click on the circle will deselect it and turn the feedback off. Note: if the radio button is in
a panel of buttons, only one can be selected at any time. Selecting a new radio button in the same

panel will deselect the currently selected radio button.

\l

Figure 3-13. A menu bar. Note: labels must be drawn at upper left corner of the SILK sketch
window.

VW<*^ [Vi^^^J^] v/W^^

Figure 3-14. Menu bars display a generic pulldown menu when the mouse is held down over the
bar items. The mouse can be moved between menu items in the resulting pulldowns. Another

menu can be selected by moving the mouse to the new bar item without releasing. The currently
selected bar item and menu item are enclosed by roundtangles. When the mouse is released, the

pulldown disappears. Note: currently, there is no way of specifying the strings for the menu items
(though they can be specified for the bar items) or the transitions from those menu items.

3.3. SILK WIDGETS 41

f-

Figure 3-15. Vertical and horizontal scroll bars. The scroll bar "elevator" can be dragged within
the confines of the outer rectangle.

n
D

Figure 3-16. A scrolling window. Note: scrolling windows can have any combination of scroll
bars at left and below. Currently, objects in the window do not scroll.

42 CHAPTER 3. WIDGET RECOGNITION

Figure 3-17. A palette. Note: there can be an arbitrary number of boxes and arbitrary graphics
can be drawn in the boxes.

Figure 3-18. Clicking on the rectangle containing a palette item selects it. The currently selected
item is displayed in inverse video. Only one item can be selected at a time.

3.4. COMPOSING COMPONENTS 43

3.4 Composing Components
In order to recognize interface widgets, SILK's algorithm must combine the results
from the classification of the single-stroke gestures that make up the primitive compo-
nents. The way it does this is to first find some basic spatial relationships between the
new component and the other primitive or widget components in the sketch. Then
these relationships are passed along with the known types of components to a rule sys-
tem that tries to identify the most likely widget which includes the new component.

3.4.1 Spatial Relationships

As each component is sketched and classified it is passed to an algorithm that looks for
the following spatial relationships (among both primitive and widget components):

•Does the new component contain or is it contained by another component?

•Is the new component near (left, right, above, below) another component?

•Is the new component in a vertical or horizontal sequence made up of any combi-
nation of components of the same type or sequences of that type?

The first relationship is the most important for classifying widgets. Many of the
common user interface widgets can be expressed by containment relationships
between more primitive components. For example, the scroll bar in Figure 3-2 is a tall,
skinny rectangle that contains a smaller rectangle. The second relationship allows the
algorithm to recognize widgets such as check boxes, which usually consist of a box
with text next to it. The final relationship allows for groupings of related components
that make up a set of widgets (e.g., a panel of radio buttons).

3.4.1.1 Overriding Spatial Relationships

After early user testing, SILK was modified to allow the user to specify hints that over-
ride the normal calculation of these spatial relationships. A prime example of this is
when sketching a pulldown menu bar. A pulldown menu bar is defined as a sequence
of menu items at the top left of the window. Real applications often also have some
items of the same menu bar at the far right of the window (e.g., for a help menu).
Unfortunately, sequences are defined as a series of the same type of object such that
each item is "near" the preceding item. This rules out many cases, including the one
described above.

44 CHAPTER 3. WIDGET RECOGNITION

To allow cases that violate SILK's distance constraints, the distance between
objects is ignored if multiple objects are selected at the time of inference. To give this
hint, the user can select multiple objects and then choose New Guess. Then, the objects
will be considered near each other and objects of the same type in a horizontal or
vertical line will be considered a sequence. This is also useful when the designer
sketches the text of a radio button or check box too far from the circle or rectangle,
respectively.

3.4.2 Rule System

After identifying the basic relationships between the new component and the other
components in the sketch, SILK passes the new component and the identified relation-
ships to a rule system that uses basic knowledge of the structure and make-up of user
interfaces to infer which widget was intended. Each of the rules that matches the new
component and relationships assigns a confidence value that indicates how close the
match is.

3.4.2.1 Rule Structure

There is at least one rule for each widget1 that is recognized by SILK. The "test" part
of the rule checks whether the rule applies. For example, the test for a vertical scroll
bar is illustrated in Figure 3-19. This test makes sure that one component is contained
by the other, both components are rectangles, and the container is skinny. This rule
illustrates that some simple graphical characteristics of the objects (in this case deter-
mining whether the container is skinny or not) are considered in addition to the com-
ponent types and spatial relationships.

(and (contains-p container containee)
(rectangle-p container)
(rectangle-p containee)
(skinny-p container :vertical))

Figure 3-19. Test for vertical scroll bar rule.

1. The current implementation uses exactly one "rule" for each widget. This is because the rules are implemented
as arbitrary Lisp functions that can each have multiple "test" / "then" pairs. A cleaner implementation would
break these compound rules up into multiple rules.

3.4. COMPOSING COMPONENTS 45

The "then" part of the rule simply returns a list containing a confidence value for
that match, a function that when evaluated can add the correct interactive behavior to
the given sketchy components, and the widget type. For example, the "then" part for
the vertical scroll bar is illustrated in Figure 3-20. At this time, the confidence values
are assigned weights that I have constructed by simple experimentation. Rules for wid-
gets that have no alternative inferences are given a confidence value of 1. Rules for
widgets with more than one "test" / "then" pair are given a range of values less than or
equal to one. The pair with what seems the most likely inference is given a confidence
value of 1. The complete set of rules used in SILK is given in Appendix E.

(list 1 '(scroll-bar-constructor
,container ,containee
,widget-agg :vertical)

'scroll-bar)

Figure 3-20. "Then" part for vertical scroll bar rule.

3.4.3 Attaching Behavior

After each of the rules have been tried, the algorithm then takes the match with the
highest confidence value and evaluates the constructor function given in the list
returned by the rule. This function assigns the sketched components to a new aggre-
gate object that represents the widget. The system keeps a list of all rules that matched
ordered by confidence value. This way it is easy to allow the designer to revise SBLK's
inference if it is incorrect (see Section 3.6). If none of the rules match, the system
assumes that there is not yet enough detail to recognize the widget. Note that there is
one constructor function for both horizontal and vertical scroll bars, so the rule illus-
trated in Figure 3-20 passes the vertical tag to cause a vertical scroll bar to be con-
structed.

Each of the widgets that SILK recognizes has a corresponding Garnet object that
use the Garnet Interactor mechanism [Myers 1990a] to support interaction and feed-
back. When SILK identifies a widget, it attaches an instance of an interactor object that
implements the required interaction to the new aggregate object. For example, the
scroll bar interactor object knows how to allow dragging of the "elevator" up and down
without letting the "elevator" leave the confines of the scroll bar.

46 CHAPTER 3. WIDGET RECOGNITION

3.5 Recognition Examples

This section presents two walk-throughs of the widget recognition algorithm. In the
first example, the designer initially drew a text squiggle Figure 3-21 (a). The gesture
recognizer returns text (b), but no graphical relationships (c) and thus no rule system
matches are found (d). The user then sketches a rectangle around the text (e), which is
recognized by the gesture recognizer (f). This is passed to the graphical relationship
detector which returns the fact that the rectangle contains some text (g). Using this, the
rule system infers that the rectangle and text combine to form a button (h).

(a) V/V^A^s^

(b)

(c)

(d)

(e)

gesture recognizer

graphical relationship
detector

rule system

I
(text)

I
none

1
no matches

(f)

(g)

(h)

gesture recognizer

graphical relationship
detector

I
(rectangle)

I
(rectangle) contains (text)

rule system I
(button)

Figure 3-21. Phases performed by the widget recognition algorithm on the example drawn in (a)
and (e).

3.5. RECOGNITION EXAMPLES 47

The second example is shown in Figure 3-22. Assume the check box on the left
and the rectangle on the right in (a) have been successfully recognized. After the
squiggle on the far right is drawn, the gesture recognizer returns text (b). This is
passed to the graphical relationship detector which returns the fact that the text is to
the right and aligned1 with the rectangle (c). This fact is then passed to the rule system
which infers that the rectangle and text combine to form a check box (d). This is fed
back into the graphical relationship detector (as implied by Figure 3-1), which detects
a sequence of check boxes (e). Finally, this is passed again to the rule system, which
returns a match for a check box panel (f). This is passed back into the graphical rela-
tionship detector, but no further relationships are found.

(a)] J \MAAVV I L VA/^^
(check box) (rectangle) (???)

(b) gesture recognizer

(c) graphical relationship
detector

I
(text)

I
(text) right of aligned (rectangle)

(d) rule system

(check box)

(e) graphical relationship
detector

I
I

sequence of (check box)

(f) rule system

(check box panel)

Figure 3-22. Phases performed by the widget recognition algorithm on the example drawn in (a).

I

1. Note that the text is too far from the check box on the left for any relationship between those two objects to be
returned.

48 CHAPTER 3. WIDGET RECOGNITION

3.6 Revising Widget Inferences
In any system that does inferencing, it is important to give the designer good feedback
on the inference results and make it easy to change those results when the system has
erred.

3.6.1 System Feedback

SILK gives the designer feedback on two related decisions: the type of the last primi-
tive or widget inference, and an indication of which alternative inferences are avail-
able. SILK displays primitive type inferences in the Primitive Type field and in a
panel of buttons, as was described in Section 3.2.2.

Widget inference feedback is given in three different ways: using color, text
fields, and button panels. After an inference has been made, the system draws the
primitive components forming the proposed widget in purple to indicate they are
related. In addition, the widget type is displayed in the widget Type field of the SILK

controls window (see Figure 3-23). The type is also selected in the panel of widget
buttons in the same window. The buttons representing all other possible inferences are
also enabled. For example, Figure 3-23 shows that SILK has inferred a radio button,
but indicates that a check box or multiple unrelated objects are also possible inferences
by not graying out those buttons. The control window can be iconified if the designer

232)2
SILK Controls - ; _:

File Edit Arrange Recognition Stoxyboaxd

Design Name:

: Sketch1 ; \s'.;;:löm';'v::;.;...;■ s/-Annotate V ^Decorate;

:■ Guess.] Widget Type: Radio-Button

'.::." .B-ittoc.'" ' \ • Check-Box' }], Jtodiö-Bqfctpn, ' HStiu-Bar

sla ..] : "'-' SerQiI-Bar :] ' Scrcll-Wln- ; | "' ' .Palette

■■Büttjon-gaagl' '"'■-' | 'RacüOi-Buttoc-Panea | Check ^ax-Panel | Multlple^Objects |..

 Primitive Type:

Rtsota-.g"o { C-rcie J Liir; I Text- I Ur.-d::^cnr r.o-i I

Figure 3-23. SILK infers that the designer has drawn a radio button. The buttons for check box
and multiple objects are also enabled, indicating those are possible alternative inferences. All

other buttons are grayed out, indicating they are not possible inferences.

3.6. REVISING WIDGET INFERENCES 49

wishes to sketch ideas quickly without any interruptions. Later, she can go back, select
each widget, and make sure they are of the correct type.

3.6.2 Automatic Reinferencing

Modifying an existing sketch should cause SILK to revise previously made widget
identifications. For example, adding new components to the sketch, deleting compo-
nents in a widget, or moving components should all cause the system to revise previ-
ous widget identifications. This would only occur if the changes caused the rule
system to identify a different widget as more likely than its previous inference. The
current implementation does not do this.

SILK lacks automatic reinferencing because the graphical relationship search
does not check the children of any top level object or widget. This could be changed,
but it is not clear that breaking up previously inferred widgets would be satisfactory
without other major changes to the system. Specifically, the calculation of rule confi-
dence values would need to account dynamically for how well a particular rule
matched the given components and spatial relationships. SILK's hard-coded confi-
dence values only allow choosing between known alternative inferences for the same
set of components. For example, SILK can choose between a radio button and a check
box. This is necessary because the low-level primitive component recognizer is not
100% reliable at distinguishing between small circles and small rectangles.

Figure 3-24 illustrates the problem with hard-coded confidence values. The
three objects were drawn in order from left to right. The confidence values say nothing
about choosing between the possible check box on the left or the possible text field on
the right. Which is more likely? Should the system automatically break-up the check
box to allow the text field inference? Currently, this can only be done by explicitly hit-
ting the New Guess button while the check box (the first inference) is selected.1

^ WV\A/w(]
Figure 3-24. Should SILK infer a check box or a text field?

1. Note that the rectangle on the right does not need to be selected. It will be considered with the text when the
check box on the left is broken up in order to generate new guesses.

50 CHAPTER 3. WIDGET RECOGNITION

3.6.3 Designer-guided Reinferencing

The designer can help the system make the proper inference when the system has
made the wrong choice, no choice, or the widget that was drawn is unknown to the
system. In the first case the designer might use the New Guess button or gesture to ask
the system to try its next best choice. Alternatively, the designer may just click on one
of the available widget Type buttons in the SILK controls window. These alterna-
tive inferences are only kept until the user starts sketching something new. If the New
Guess button is used later, SILK runs its inference algorithm, regenerates the alterna-
tives, and changes the type of the widget to the next best choice.

If SILK made no inference on the widget in question, the designer might select
the primitive components and click on the New Guess button, thus forcing the system
to reconsider its inference and focus on the components that have been selected. As
discussed previously (see Section 3.4.1.1), SILK will then ignore distance require-
ments between the selected items when testing the widget rules. For example,
Figure 3-25 shows the rule for a radio button. If the individual components of a poten-
tial radio button are selected (see Figure 3-26) and the user clicks on the New Guess
button, SILK redefines the result of near-p to return true for the two objects, not just
objects that are near the text string. This redefinition will cause the radio button shown
in Figure 3-26 to match the radio button rule.

(and (circle-p compl)
(text-p comp2)
(near-p compl comp2)
(aligned-p compl comp2 :bottom)
(horizontal-left-p compl comp2)
(check-box-width-p compl))

Figure 3-25. Test for radio button rule.

J
SILK Sketch

D A *D

Figure 3-26. A radio button whose components have been drawn far apart.

3.6. REVISING WIDGET INFERENCES 51

Finally, if the designer draws a widget or graphical object of which SILK has no
knowledge, the designer can group the primitive components in question so that they
are not used in an alternative inference later. Currently, SILK has no way of learning
the new widget. Thoughts about how SILK might learn to recognize new widgets are
given in Section 3.7.

3.6.4 Reinferencing Problems

There are a few user interface problems with respect to SELK's inferencing mecha-
nism. First, the designer is unable to edit a widget without first breaking it up, losing
the inference, making the desired changes, and then forcing the system to reinfer. This
could be solved with a mode that would allow edits inside of a widget and then either
perform an automatic reinference or force the user to ask for new inferences.

A related, but more severe problem is the lack of feedback and the inability to
change a lower level inference when the system uses that inference to make a higher
level inference. The example in Figure 3-27 illustrates this problem. The designer
drew the primitive components in the order shown: a radio button followed by a check
box to the right of it. Unfortunately, the system may mistake the rectangle for a circle
and thus the check box for a radio button. This will cause SILK to immediately group
the second radio button together with the first and form a radio button panel. The
designer is given no chance to correct the mistake since the system will now only offer
alternative inferences for the group containing the two buttons (and there are no alter-
natives).

OMAAyv Q

Figure 3-27. Radio button and check box potentially mistaken for a radio button panel.

To fix this mistake, the designer currently needs to break-up the panel using
either u&group or by selecting Muitipie_objects from the panel of possible widget
types. Then, the incorrect type can be changed from radio button to check box by
pressing the New Guess button. A better solution would be to always show the primi-
tive type of the last primitive drawn. Thus, the designer could change it and cause a
new widget inference. Another alternative would be to allow New Guess to change the
last primitive inference when there are no other available widget inferences.

52 CHAPTER 3. WIDGET RECOGNITION

3.7 Learning New Rules: A Proposal
The main problem with SILK's widget inference algorithm is the hard-coded nature of
the rules. This limits the flexibility of the system in terms of recognizing new ways to
draw known widgets and supporting new user-defined widgets. This section proposes
three ways to try to learn new widgets during regular use of the system. All three tech-
niques assume that the user would select the primitive components in question, give
the widget a name (which may be the same as an already known widget), and then
instruct the system to learn a new widget definition or modify an existing one.

3.7.1 Learning Spatial Definitions

The first technique involves trying to learn the spatial relationships found between the
primitive components in a widget using the same algorithms that are used to find these
relationships when recognizing widgets. These relationships can then be used to add
new rules to the rule system. For example, SILK could learn the vertical scroll bar test
shown in Figure 3-19 by noticing that one rectangle contained the other and that the
containing rectangle was skinny. Since the example may fulfill several graphical rela-
tionships and features, it may be good to allow the user to indicate which of these rela-
tionships should be used for recognition (as is done in the Electronic Cocktail Napkin
[Gross 1994; Gross 1996]). For example, in the scroll bar shown in Figure 3-2, SILK
notices that in addition to the containment relationship, the two rectangles are a hori-
zontal sequence (based on their centers). This fact is unimportant to any rule the sys-
tem should learn from this example.

The SILK user study (see Chapter 6, "Evaluation") illustrated several situations
in which SILK's built-in rules could not identify a widget that could easily have been
recognized by learning spatial relationships. One participant tried to sketch a text field
that had the field label above the type-in box (see Figure 3-28). The SILK rule for text
fields requires the field label to be to the left of the type-in box (see Figure 3-29).
Allowing the user to redefine this rule using the new spatial relationships would allow
SILK to recognize this non-standard configuration while still supporting the desired
behavior. A similar situation was encountered by two of the first three participants who
tried to sketch a button by surrounding a text squiggle with a circle instead of a rectan-
gle. The hard-coded rule for buttons did not allow this and was changed to prevent this
problem from occurring with later participants. Again, this situation could have been
avoided by allowing the designer to add a new rule using spatial relationships.

Figure 3-28. Text field that is not recognized by SILK.

3.7. LEARNING NEW RULES: A PROPOSAL 53

(and (text-p compl)
(rectangle-p comp2)
(near-p compl comp2)
(aligned-p compl comp2 :bottom)
(horizontal-left-p compl comp2))

Figure 3-29. Test for text field rule.

There are several difficulties in getting this type of learning algorithm to work.
First, there is a problem of rule conflict. Learning a new rule could cause an older rule
to become ambiguous. Imagine there were no rules for text field and the rule for check
box was: text near rectangle. That works fine until the user attempts to add a text
box. It will be misrecognized as a check box and the user will try to add a new rule.
The system may give text box the same rule as check box or even more specifically:
text left of aligned rectangle. This could cause the system to get confused
when trying to recognize these two widgets. One solution is to point out such rule con-
flicts and force the user to specify more features to disambiguate the two cases. A
related problem is making sure that there are enough built-in spatial relationships and
graphical features to cover most cases, but not too many, as that will complicate the
interface for picking out the important ones.

Another problem with trying to learn spatial definitions is in assigning the rule
confidence values. As was described previously, these values are currently hard-coded
and their assignment becomes complex as the number of recognized widgets and wid-
get variations grow. An automated way of learning these values would be preferable to
hand-picking them.

3.7.2 Bayesian Belief Networks

Bayesian belief networks [Pearl 1988; Charniak 1991] may offer an automated way to
learn better confidence values for SILK's rule system. This method of reasoning uses
probabilities to try to infer concepts from uncertain information. By noticing how a
designer corrects the widget inferences made by SILK, the system could adjust its
probabilities and infer concepts better in the future. In addition, Bayesian networks
would also offer a way to have the "probability" values returned by Rubine's algorithm
percolate up into the rule system. Currently, the probabilities are only used to see if the
gesture is recognized above some basic cut-off value, and then they are thrown away.
If these values were retained, they could offer more evidence in determining if one
inference is more likely than another.

54 CHAPTER 3. WIDGET RECOGNITION

3.7.3 Neural Networks

The final technique to consider in learning widgets by example would be neural net-
works. The advantage of these is that the network determines the important features to
distinguish the objects being classified, rather than the user or programmer. There are
two major problems with using neural networks in SILK. The first is figuring out
which level of data to train the networks on: the pixels making up a widget, the
Rubine-style features of the objects making up a widget, or something at an even
higher level.

A related and even more important problem is the large number of examples nec-
essary to train a neural network successfully. Neural networks often require thousands
of examples to classify new examples well. This can be reduced by picking the right
features to train on. For example, with SILK, the Rubine-style features for each primi-
tive in the widget may be a good choice to experiment with. The examples can then be
systematically varied by size in order to multiply the number of examples the trainer
sees. This technique could be successful for learning the set of built-in widgets by col-
lecting examples from many designers, but it may prove impossible to make it work
well when a single designer is trying to extend the system.

3.7.4 Analogous Widgets

The three techniques described above would allow SILK to recognize new widgets,
though the system would know nothing about the widget's behavior unless the
designer demonstrated it using storyboards (see Chapter 4, "Storyboarding"). Another
way this problem can be solved is by allowing designers to point out the parts of new
widgets that are analogous to existing widgets. The system could then try to infer the
widget behavior from the differences and similarities between the old and new wid-
gets. This proposed technique is discussed in more detail in Section 8.1.1.

3.7.5 Explicit Type Specification

It is possible that any widget recognition algorithm may be too error-prone. Automatic
recognition of widgets may hurt the design process more than it helps by forcing the
designer to continually pay attention to and correct the recognizer. If widget recogni-
tion cannot be improved using the learning methods described above, a more explicit
widget type or behavioral specification technique may be worth looking into (as
described in Section 8.1.2).

3.8. SUMMARY 55

3.8 Summary

This chapter presented a widget recognition algorithm that operates in three separate
stages. First, single-stroke primitive components are recognized by a gesture recog-
nizer using Rubine's algorithm. Second, a spatial relationship detector looks for rela-
tionships between the newly recognized primitive and other components in the sketch.
Finally, these relationships are passed to a rule system that tries to combine related
components and form new widgets. SILK attaches the pre-defined interactive behavior
of its best guess to the sketchy components. Since sketched input is inherently ambig-
uous, several possibilities may be proposed to the user so they can select an alternative
when SILK makes an incorrect inference. This chapter also proposed several methods
for learning how to recognize new types of widgets.

56 CHAPTER 3. WIDGET RECOGNITION

CHAPTER 4

Storyboarding

Rough sketches of interface screens are often tied together by simple storyboarding
techniques. As in their traditional use in film and animation [Thomas 1981], story-
boards are used to illustrate important sequences of the design artifact. A designer will
illustrate sequences of system responses to end-user actions by annotating the sketches
to indicate these relationships. Figure 4-1 shows a simple sketched storyboard. The
storyboard illustrates that the rectangle in the drawing window should be rotated when
the button at the bottom of the screen is clicked.

Designers often build up storyboards from their sketches by numbering the
screens, drawing arrows on them, and attaching annotations. In this way a designer can
describe the major transitions that occur between screens when a user manipulates the
interface. A desire to iterate quickly leads designers to use hand drawn storyboards for
this type of work. This technique has been shown to be a powerful tool for designers
making concept sketches for early visualization [Boyarski 1994]. In fact, although not

IPS:

Figure 4-1. A storyboard that illustrates rotating a rectangle upon button presses.

57

58 CHAPTER 4. STORYBOARDING

specifically asked about storyboards, several of the designers I surveyed (see
Chapter 2, "Informal Survey of Designers") mentioned using storyboards during the
early stages of user interface design. Storyboards are a natural representation, they are
easy to edit, and they can easily be used to simulate functionality without worrying
about how to implement it. In addition, the success of HyperCard has demonstrated
that a significant amount of behavior can be constructed just by transitioning to differ-
ent screens upon button presses.

SILK storyboards allow the specification of the dynamic behavior between wid-
gets and the basic behavior of new widgets or application-specific objects. Having a
dialog box appear when a button is pressed is an example of the dynamic behavior
between widgets. A designer can illustrate these interface behaviors while the inter-
faces are still in their rough early stages. The main advantage over paper sketches is
that SILK allows the storyboards to come alive and permits the designer or test sub-
jects to exercise the interface in this early, sketchy state. In Run mode, buttons and
other widgets are active (i.e., they give feedback when clicked), but without story-
boards they cannot perform any actions.

This chapter describes how SILK can be used by interface designers to illustrate
sequencing behaviors. It first describes how difficult it is to illustrate behavior with
existing tools. Next, it describes the design and implementation of SELK's storyboard-
ing mechanism. The chapter concludes by exploring some potential extensions to the
system.

4.1 Drawbacks of Existing Tools
When it comes to supporting interaction, existing tools fall short of the ideal. Most
user interface builders, such as the NeXT Interface Builder and Visual Basic, require
the use of programming languages in order to specify any interaction beyond that of
individual widgets. Prototyping tools such as Director and HyperCard allow the
sequencing of screens, and although they use direct-manipulation methods to specify
these sequences, these methods lack the fluidity of paper-based storyboarding. To
review or edit the screen transitions and for anything but the most simple sequences,
these tools require the designer to traverse a series of complex dialog boxes or use a
scripting language. Requiring the use of programming or scripting languages is not
realistic for SILK's target application and audience. Therefore, SILK allows the rapid
illustration of a significant amount of interaction by sketching alone.

Due to the lack of good interactive tools, many designers use low-fidelity proto-
typing techniques [Rettig 1994]. One of the biggest drawbacks to using low-fidelity
prototypes is the lack of interaction possible between the paper-based design and a

4.2. VISUAL LANGUAGE 59

user, who may be one of the designers at this stage. In contrast, SILK performs screen
transitions automatically in response to a user's actions. This allows more realistic
testing of rough interface ideas. In addition, rather than being thrown out like paper
prototypes, these electronic specifications could possibly be used to automatically gen-
erate code that implements the transitions in the final system (see Section 4.7.2).

4.2 Visual Language
A simple model was chosen for SILK's storyboarding language. This visual language
has two types of objects, screens and arrows. Each screen is a sketch of an interface in
a particular state. For example, Figure 4-1 illustrates three screens that differ in only
the orientation of the rectangle in the drawing window. Arrows connect objects con-
tained in one screen with a second screen. The arrow indicates that when the object in
the first screen is manipulated (the current model is limited to mouse clicks), the sys-
tem should display the second screen instead of the first. For example, the arrows in
Figure 4-1 indicate that when the user clicks on the button at the bottom of the screen,
the user should see the rectangle in its new (rotated) orientation.

Using a notation of sketchy marks that are made on the interface sketches is ben-
eficial since these marks are similar to the types of notations that one might make on a
whiteboard or a piece of paper when designing an interface. In addition, the same
visual language is used for both the specification of the behavior and the static repre-
sentation that can be later viewed and edited by the designer. This static representation
is natural and the SILK usability test showed that it is easy to use (see Chapter 6,
"Evaluation"), unlike the hidden and textual representations used by other systems,
such as HyperCard and Visual Basic.

4.3 Examples
SILK storyboards make it easy to illustrate several common interface behaviors. This
section presents several examples. In Figure 4-1, the designer has illustrated a repeat-
ing sequence of rectangle rotations. Each time the button is clicked, the rectangle in
the drawing window rotates 60 degrees. This example also shows that the transitions
can loop back to the screen they started on. An important point about this example is
that it shows that a designer's knowledge and creativity allows the illustration of a
behavior (i.e., rotation) that the underlying tools, SILK and the Garnet toolkit it uses,
do not even support.

60 CHAPTER 4. STORYBOARDING

■n SILKStoryboard*

Edit Stozyboaxd

c5*n^jp <£Z»z) (p^)

Figure 4-2. Make a dialog box appear and disappear when the appropriate button is pressed.

Figure 4-2 illustrates bringing up a dialog box on top of the sketched drawing
window. This example is interesting since the designer is able make the dialog box
opaque so that it hides any objects it may appear over. This is accomplished by first
grouping the objects making up the dialog box and then selecting Make opa<jue from
the Arrange menu in the SILK controls window1. This technique can also be used
for illustrating pop-up menus. An alternative design I considered was to have SILK
recognize these types of widgets and then set this property automatically.

Figure 4-3 illustrates a sequence in which the user can select a circle by clicking
on it. The circle can then either be doubled in size or shrunk in half by clicking on the
buttons at the bottom of the screen. This example also illustrates the feedback of selec-
tion handles. It is important to remember that this example does not specify how selec-
tion or scaling should work in general, but instead illustrates how it might operate.

SILKStoryboard» -UUI
ü

Cg^> g=3>

CT ' D

($%~lgg^ cS$> <S>

X?

/*C$^> <S>

£T

Figure 4-3. Scaling a circle with selection handles.

1. This is currently unimplemented. The example was created by changing properties of the dialog box using the
Garnet debugger.

4.4. SCREEN GRAPHS 61

Figure 4-4. A partial screen graph for a simple drawing tool. Clicking on a palette item changes
the state and then clicking on the background creates an object of the correct type. The bottom

button deletes the object.

Finally, Figure 4-4 shows how a designer could illustrate the operation of an
arbitrary palette of tools. In this example the user is able to create any of three objects
in a drawing window by first clicking on the object in the palette and then clicking in
the drawing window. The button at the bottom of the window allows the user to delete
the newly created object. Note that although these examples show the arrows leaving
widgets, transition arrows can start from any graphical object or even the background.

4.4 Screen Graphs

SDLK's storyboarding model implies that a program can be thought of as a graph (see
Figure 4-4). The nodes of the graph are the different states of the program (i.e.,
screens) and the arcs out of each node represent the end-user actions that cause state
changes. To fully specify a program, the designer would have to specify the entire
graph. However, this is not a major drawback of the model, since storyboarding is gen-
erally used for illustrating important sequences in an interface, rather than for specify-
ing an entire interface. Section 4.7 contains a discussion of several techniques which
vastly reduce the amount of work needed to specify more complete screen graphs.

62 CHAPTER 4. STORYBOARDING

The important sequences in an interface can be thought of as partial paths
through the screen graph of an application. For example, the middle path in Figure 4-4
illustrates the sequence in which the user creates a rectangle and then deletes it by
clicking on the delete button. By illustrating a few partial paths, the designer can spec-
ify enough of an interface for the design team to quickly consider several possible
interface ideas.

4.5 Storyboard User Interface

The system was designed to make specifying sequencing paths easy. The designer
constructs storyboards by sketching screens in the SILK sketch window as described
in Chapter 1. Screens can then be copied to the SILK storyboard window using a
menu command. At this point, the original screen can be modified in the sketch win-
dow to show how its state might change. After this, the new screen is also copied to the
storyboard window. Now, the designer can start drawing arrows in the storyboard win-
dow that indicate screen sequencing, or more screens can be produced.

The arrows can be drawn from any widget, graphical object (e.g., primitives and
decorations), or the background, to another screen. Thus, the designer can cause transi-
tions to occur when the user clicks and releases the mouse button on any of these
items. The transition is aborted if the mouse-up occurs anywhere outside of the object.
Each arrow shows an anchor point on the object it was drawn from and an arrowhead
on the screen it was drawn to. Unlike the arrows in many visual dataflow languages
[Pictorius 1995] and the wires in CAD tools, SILK's storyboarding arrows are free-
form. This unconstrained control permits the designer to avoid some of the "rats-nest"
problems associated with these other systems, where lines cross at 90 degree angles
and are thus hard to follow.

4.5.1 Editing Storyboards

SILK offers several operations to help in the editing of the screens and transitions
specified in the storyboard. Clicking on a screen or an arrow highlights it in red and
then the selected screen or arrow can be deleted. Screens can also be cut, copied, or
pasted in the storyboard window. The entire storyboard can also be cleared. In addi-
tion, SILK automatically maintains the transitions and thus the legality of their seman-
tics when screens are removed or new arrows are added.

Removing a screen can allow arrows to come from or go to a non-existent screen.
Therefore, when a screen is deleted all arrows coming into or out of that screen are
also deleted. In addition, removing a screen causes all of the screens after it to move in
the left to right, top to bottom, screen layout. Thus, SILK redraws all arrows to or from
the affected screens using straight lines.

4.6. IMPLEMENTATION 63

Adding an arrow may violate the rule that only one arrow is allowed to leave a
particular object. When this case arises, the old arrow is automatically deleted after the
new arrow is drawn. Maintaining the original arrow until after the new one is drawn
helps when the designer is replacing the straight line arrows generated by SILK.

The SILK usability test (see Section 6.2) showed that designers would like more
control when editing the storyboard. For example, designers would like to position the
screens wherever they like, rather than in the sequential order that SILK uses. They
also wanted a tighter coupling between the storyboard and sketch windows.

4.5.2 Testing the Interaction

When the designer is ready to test the specified interaction, she can switch to Run
mode. At this point, the designer must specify which screen will be the initial screen to
start the interaction. This is accomplished by selecting a screen in the storyboard win-
dow and copying it back to the sketch window. Now the designer or an end-user can
start interacting with the sketch and it will make the proper transitions as defined by
the visual program displayed in the storyboard window. Each time the user clicks on
an object that has the anchor of an arrow attached to it, the system will replace the cur-
rent screen with the screen attached to the arrowhead. For example, the behavior illus-
trated by Figure 4-1 will show a progression of rectangle rotations when the user
clicks on the button in the sketch window.

4.5.3 Feedback

In order to allow the designer to debug their story boards, we have supplied some feed-
back mechanisms that are displayed while in Run mode. First, the currently active
screen (i.e., the one being displayed in the sketch window), is always highlighted in
the storyboard window. This allows the designer to know the current state of the sys-
tem. Second, the object that caused the last transition to the current screen is high-
lighted along with the arrow leading to the current screen. A designer can use these
mechanisms to help check that her visual program is working properly. Finally, wid-
gets in the sketch window may supply their own feedback. For example, a button high-
lights while the mouse is held down over it.

4.6 Implementation
SILK's storyboarding model maps into an implementation that is also quite straight-
forward. Every sketched widget and screen is given a unique ID. When a screen is cop-
ied from the sketch window to the storyboard window, the objects are copied along
with their IDs.

64 CHAPTER 4. STORYBOARDING

When the system is put into Run mode, a screen transition table is built by exam-
ining the arrows in the storyboard along with the objects and screens they connect. For
each arrow the system creates a transition entry that contains the object's ID along
with the origination and destination screen IDs. When the user clicks on an object in
the sketch window, the system checks whether that object has a transition defined on it
by looking it up by its ID and the ID of the current screen. If a transition is defined, the
system copies the screen specified by the destination ID to the sketch window. Thus a
program executes upon each input event by examining the transition table and copying
the specified screen.

This implementation could be made more efficient (and exhibit less screen
flicker) by checking for differences (deltas) between the two screens and storing in the
transition entry the necessary operators to effect the change. Instead of the outright
replacement of objects that change, the transition could modify "interesting" object
parameters, such as: visibility, left, top, width, height, and scale. Then when a transi-
tion fires, the system would only change parts of the screen rather than make an
entirely new copy. The interfaces created by designers during the SILK usability test
(see Appendix "SILK Evaluation Data") exhibit many common objects among the
screens, thus supporting the use of a delta transition model.

4.7 Extending Storyboards

The current model of storyboard sequencing is sufficient for many applications, but
falls short when the designer wishes to specify a more complete interface. There are
several ways the basic model can be extended to increase the power of this specifica-
tion style.

4.7.1 Parallel Storyboards

Currently the system supports multiple paths through an interface screen graph (as
seen in Figure 4-4), but only one of these paths can be followed at a time. An obvious
extension of this is to allow multiple states (i.e., screens) to be active at the same time,
but only one in each independent path. An independent path is a sequence of screens
that cannot be reached from another independent path by following the drawn transi-
tion arrows forwards or backwards. I term these independent paths, combined with the
previously discussed difference checking algorithm, parallel storyboards.

Parallel storyboards would allow partial updates to the current screen in the
sketch window by combining the differences specified by multiple storyboard screens.
Thus, the designer could describe separate paths for manipulating different objects,
displaying the results of the distinct manipulations in the sketch window at the same
time. For example, the operation of the palette objects in Figure 4-4 could be described

4.7. EXTENDING STORYBOARDS 65

by the two paths given in Figure 4-5. Then, an end-user would be able to produce the
screen shown in Figure 4-6 by creating a rectangle followed by a circle or vice-versa.

Figure 4-5. Parallel storyboards that allow the creation of circles and rectangles in any order.

SILK Sketch

/ /\AM^^ 3
Figure 4-6. A drawing that could be created with the parallel storyboards defined in Figure 4-5.

66 CHAPTER 4. STORYBOARDING

In the current storyboarding model, the size of the specification grows exponen-
tially. Parallel storyboards allow the size of the specification to grow as the product of
the number of active objects (i.e., objects that start transitions) and the number of sup-
ported operations on them. This is a significant improvement. In the example illus-
trated in Figure 4-5 there are two active objects (the rectangle and the circle) and one
operation (create object).

This design for parallel storyboards is not quite correct - it permits ambiguity. In
the example illustrated in Figure 4-5, which object should be created if the user first
clicks on the rectangle palette item, then the circle item, and then in the drawing area?
To avoid this, the designer needs a way to indicate that the middle screens are a shared
state that can be active in only one path at a time. Figure 4-7 shows that grouping the
screens is one way this might be indicated. In addition, there would need to be a rule to
resolve the conflict when it occurs. For example, when a second path enters the
grouped states at run time, make the path that reached the state first retreat one state,
undoing any screen changes it made. Now the example works as expected. When the
user clicks on the circle palette item, the rectangle selection feedback will be undone
to indicate that only the circle is selected.

Figure 4-7. One way to remove the ambiguity in Figure 4-5 - shared state that has two arrows
leaving on the same event. (Note: the grouped state feedback was added programmatically.)

4.7. EXTENDING STORYBOARDS 67

4.7.2 Inferencing Techniques and Code Generation

Another way in which to make storyboards more expressive is by applying inferencing
techniques to them. Programming-by-demonstration (PBD) is a technique in which
one specifies a program by directly operating the user interface [Myers 1992; Cypher
1993]. The system then tries to infer a program to implement the interaction. SILK's
storyboarding system is similar to a PBD system. In the sketch window the designer
specifies the layout and structure of the interface, while in the storyboard window she
demonstrates possible end-user actions and shows how the layout and structure should
change in response.

In the current system there is no inferencing involved. All actions and responses
must be specified by the designer. Consider the rotation case illustrated in Figure 4-1.
A PBD system could take the two rotation steps shown and try to infer the amount of
rotation to apply on any subsequent button press. The PBD system could then indicate
this inference by replacing the screens in question by one compound screen in which
the inference is made explicit. Double clicking on the compound screen would display
the original sequence as drawn. This would save both the designer's time and lots of
valuable screen space.

Another application of inferencing is to allow the system to infer that operations
applied to one type of object may also be applied to other objects. For example, in
order to support scaling for both rectangles and circles the designer currently needs to
specify two separate sequences operating on both types of objects. If the system could
infer that scaling is simply the modification of a parameter of the selected object, then
one example sequence would allow scaling on all objects. Again, this would save a
considerable amount of designer time and storyboard space.

A critical problem with PBD techniques is the lack of a static representation that
can be later edited. Marquise [Myers 1993] and Smallstar [Halbert 1984] use a textual
language (a formal programming language in the latter case) to give the user feedback
about the system's inferences. In addition, scripts in these languages can then be edited
by the user to change the "program." This solution is not acceptable considering that
the intended users of SILK are user interface designers who generally do not have pro-
gramming experience. I believe that SILK's visual notation can be extended to show
the inferences that a PBD system might make. For example, simple graphical
attributes could be displayed on top of the storyboard screens to indicate iteration and
conditionals, as was done in Pursuit [Modugno 1995].

It may also be useful to defer much of the inferencing until transformation time,
thus preserving the fluidity of the sketching and brainstorming phases. At that point,
PBD might also be used to help construct a call-back skeleton from the transitions.

68 CHAPTER 4. STORYBOARDING

This skeleton could become much more useful if the inference engine was able to gen-
eralize operations, as in the previously described scaling example.

4.7.3 Storyboard Space Saving Techniques

One of the major problems with visual languages is the large amount of screen space
they require as compared to textual languages. Besides PBD, there are several other
space-saving techniques that may help overcome this problem.

The first major problem encountered by designers is the "rat's nest" of arrows
connecting screens. As an interface gets more and more complex, these arrows become
hard to follow. This problem is solved in many CAD systems by performing automatic
routing algorithms. This would be especially useful after moving or deleting screens in
the storyboard. Another solution is to allow multiple views of the storyboard window.
For example, a designer should be able to specify that she wishes to only see arrows
coming into a particular screen, out of a particular screen, or out of a particular object.
Another view might only show screens that are reachable from the current screen or
selected arrow. User-controlled routing and editing of free-form arrows, along with
multiple views, may be enough to solve many arrow related problems.

The second major problem involves the size of the storyboarding panels. Cur-
rently when the designer copies a screen to the storyboard window, it is displayed at
40% of its original size. It may be useful to allow the designer to vary this parameter
for more control over the space. It may also be nice to automatically vary the scale
among different panels according to which part of the interface the designer is working
on. This technique is similar to the use of fisheye views in visualization tools [Furnas
1986].

Another technique for saving storyboarding' space is to only show relevant
changes to the screens, instead of the entire screens. In the rotation example (see
Figure 4-1), the second storyboard screen might only show the rotated rectangle with-
out the palette, window, or button. This is similar to some of the techniques used in
Chimera [Kurlander 1993] and systems based on graphical rewrite rules. Another way
to conserve storyboard space is to try to compress multiple changes into a single
screen. The Pursuit [Modugno 1995] system uses such techniques. Something similar
could be implemented in SILK if arrows were drawn not just to the next screen, but to
the object that should be modified by the specified action. Thus, multiple arrows could
arrive on distinct objects in the same screen to illustrates multiple state changes.

4.7. EXTENDING STORYBOARDS 69

4.7.4 Additional Events, Animation, and Conditionals

In addition to making the storyboards more expressive and compact, there are some
simple additions that can be made to support more forms of interaction. The only event
the current system permits is clicking on widgets or graphical objects. SILK could
allow more complete user interfaces by supporting dragging, drag and drop, double
clicking, timer events, and typing. In addition, a null event arrow that would match on
any user event that did not match on the current screen would make error handling eas-
ier. Allowing arrows to be annotated with event types would allow some of these addi-
tional events. One way to support this is to have a palette of arrow types in the
storyboard window (a mouse icon for single click, two mice for double click, a clock
for timer events, etc.) The palette would allow the designer to select the current mode
for the arrows drawn in the storyboard window. Arrows of different types would be
distinguished by distinct colors and possibly line styles.

The timer event is especially interesting in that it would allow designers to
quickly mock-up multimedia applications that have animation or video by specifying a
few key frames that SILK would automatically transition between when the timer
event occurred. A number of professional designers who have seen SILK requested
this feature. A simple property sheet would allow changing the time-out on individual
arrows or the default time-out given by the clock icon.

Besides supporting these new event types, the current implementation of SILK
should be extended to support better default behaviors for two of the existing widgets,
scrolling windows and text fields. Scrolling windows should scroll objects in the win-
dow by some default amount. Adding the previously described drag event would per-
mit a custom definition of scrolling using a scroll bar along with the associated
window and objects. Text fields should allow entering text in the field box by default.
Adding typing events would also allow a custom definition of this behavior.

Another limitation of the current model is that it only supports checking that an
event takes place on a particular object. It would be useful to have a transition that
occurs conditionally on the object in question being in a particular state. For example,
the designer may want a mouse click on a check box to only cause a transition if the
box was previously unchecked.

70 CHAPTER 4. STORYBOARDING

4.8 Summary

Questionnaires and site visits show that hand-drawn storyboards are a common tool
used to illustrate behavior. Unlike paper sketches, SILK's electronic storyboards allow
the designer or test subjects to interact with the sketch before it becomes a finalized
interface. The current storyboarding model is quite simple and therefore easy to pick
up and use. If more expressive power is necessary, there are several changes discussed
in this chapter that could be added, but at a cost of more complexity in the SILK user
interface.

CHAPTER 5

Support for Later Development Stages

Although SILK was designed to support the early conceptual stages of user interface
design, a successful tool cannot ignore the later phases through which a design will
progress. SILK supports the prototyping and implementation stages with two technical
features: design memory mechanisms for managing different versions of a design
along with the associated documentation, and screen transformations for passing the
design off to another tool. This chapter contains a description of these features along
with a discussion of proposed extensions that can better support the entire user inter-
face design cycle.

5.1 Design Memory Mechanisms
One of the important features of SILK is its support for design memory. Design mem-
ory refers to any mechanism that allows the designer to manage the documentation
about the design together with the different versions of the design. Practicing design-
ers have found that the annotations on design sketches serve as a diary of the design
process, which are often more valuable to the client than the sketches themselves
[Boyarski 1994]. Such documentation may include the reasons why a particular design
decision was made or possibly who made a particular design change. SELK supports
making and saving this documentation via an annotation layer.

The designer can annotate a design by either typing or sketching on the annota-
tion layer (see Figure 5-1). The annotations are rendered in blue and the layer can be
displayed or hidden with the click of a button in the SILK controls window (see
Figure 1-17 on page 17). Annotations made on paper can be difficult to store, organize,
search, and reuse. This is not the case with SILK's electronic annotations. For
instance, annotations that were made using the keyboard can be searched later using a
simple search dialog box (see Figure 5-2).

71

72 CHAPTER 5. SUPPORT FOR LATER DEVELOP -

Figure 5-1. The annotation layer is displayed on top of the sketch.

 ,"_
'(;ii Search Annotations

Enter string to find in storyboard annotations.

Search String: lhanded

OK- Cancel

SE

Figure 5-2. Dialog box for searching annotations on storyboard screens.

5.1. DESIGN MEMORY MECHANISMS 73

As in Sketch mode, SILK's Annotate mode supports the full set of editing ges-
tures and menu commands. None of the marks drawn on the annotation layer are inter-
preted, though widgets that have been interpreted in the sketch can be pasted to the
annotation layer. This feature can be used to document widget changes in the annota-
tion layer by including a copy of the original object.

SILK also allows a designer to save designs or portions of designs for later use or
review. The designer can reuse screens by first visually scanning the miniaturized
screens in the storyboard window to find the proper screen and then copying it to the
cut buffer. Then, she can open the new design and paste the screen into the new story-
board. By saving multiple versions of the same design in the one storyboard, the
designer can also compare these thumbnails on screen.

5.1.1 Design Memory and Design Management Extensions

Since design is often a group task, SILK could easily be extended to support multiple
layers, allowing different members of the design team to create personal annotations.
This feature could be used to view team members' comments as the design progresses •
and to also review their comments at a later date.

Design management could easily be improved. First, the system could be
extended to display multiple designs from separate design files (e.g., separate story-
boards) at the same time. This way a designer could make side-by-side comparisons or
more easily copy portions of one design into a new design. Second, SILK could dis-
play several designs in a miniaturized format that is representative of the different
screens in each design so that the designer could quickly search through a directory of
previously saved designs visually rather than purely by name. Another promising
search method would be to support visual queries. That is, the designer could sketch a
screen and query the system for any designs that contain similar screens. Such a mech-
anism is supported for architectural drawings in the Electronic Cocktail Napkin [Gross
1994; Gross 1996]. Finally, a more powerful versioning system that supported check-
in, check-out, display of differences between versions, and roll-back, as with Unix's
res application, would greatly enhance SILK usefulness for production quality work.

It might also be important to let designers view a graphical history of how a
design progressed, both within a version and between versions. One way to do this is
to use tracing layers [Wong 1993] to view different versions of screens on top of each
other. Another way is to keep a history of stroke order and allow animations of the
changes [Genau 1995].

74 CHAPTER 5. SUPPORT FOR LATER DEVELOP-

5.2 Screen Transformations
In addition to supporting the management of SELK-based designs it is also important
to support transferring those designs to another tool at the appropriate time in the
design cycle. When the designer is happy with an interface screen, selecting Trans-
form from the Recognition menu causes SILK to create a new window, the SILK

Finished window, and to generate real widgets and graphical objects in this window.
These widgets can take on the look-and-feel of a standard graphical user interface,
such as Motif, Windows, or Macintosh. The current version of SILK generates Motif
widgets that can be copied and then pasted into Gilt [Myers 1991], the Garnet user
interface builder. Figure 5-3 illustrates the transformed version of the screen illustrated
in Figure 5-1.

-1 SILK Finished I'lJi

EF' •. •
::;ST

o ■'■'■

D
.■■©■:

p X

T

7

: :';^;'xi;:'|[S^^eJ ^; -■ =.: L^fvi^i-v^^i'^vi'; -

Figure 5-3. The Motif transformation of the sketched screen illustrated in Figure 5-1.

The widgets and objects are positioned in the same locations that they occupied
in the original sketch. Compound widgets (i.e., pulldown menus, panels of buttons,
check boxes, and radio buttons) are spaced evenly and treated as one object. Palette
objects, as well as objects not making up a widget, are transferred in their existing
polyline form. An interface screen that supports all of the widgets recognized by SILK
(see Figure 5-4) has been transformed by SILK in Figure 5-5.

5.2. SCREEN TRANSFORMATIONS 75

Figure 5-4. A screen that contains all the widgets recognized by SILK.

SILK Finished

Menu 1 : Menu 2 Menu 3

: Labei;;l;|i. ;HLafaei':-2;|H: ■ ;^wf^; \, Label: ;1 ^: ;:.;;■;- £j.^nap ^

I —— JLabel 3
file [Field..^,...^-j;

ass

Figure 5-5. The transformation of the sketch illustrated in Figure 5-4.

76 CHAPTER 5. SUPPORT FOR LATER DEVELOP-

The transformation process is mostly automated, but it requires some guidance
by the designer to finalize the details of the interface (e.g., textual labels, colors, and
alignment). If the labels were replaced in the sketch with ASCII text (using the caret
gesture), this text will be transferred to the new widgets, otherwise they are transferred
as generic labels. After saving the screens into a Gilt design, programmers can add
callbacks that include the application-specific code to complete the application.

5.2.1 Transformation Extensions

One obvious extension to the current transformation algorithm is to transform all of
the screens in the storyboard, rather than just the one that is displayed in the SILK

sketch window. In addition, rather than requiring the designer to copy and paste these
transformed screens into Gilt, the system should generate the proper Gilt files automat-
ically. These transformed files should also retain any annotations the designer has
made on the design.

Since the types of the widgets are known at transformation time, the process is
straightforward and is implemented as a large case statement. Instead of generating
Garnet objects, this code could easily be modified to generate alternative UI widget
descriptions. For instance, SILK could generate OSF's UIL [Ferguson 1993],
Microsoft's Visual Basic, HTML (see Chapter 8, "Future Work"), or any other format.

The hard part about doing the screen transformation correctly comes about when
the design team tries to go back and forth between the two formats. For example, the
team could first use SILK, next generate Visual Basic (VB), and then using VB add
new widgets and associated application code. If at that point the design team decides
they need to make some changes at the sketch-based level, the new changes will be
lost. One way to solve this problem is to use auxiliary data structures to keep track of
new objects and code so that they can be attached later when SILK retransforms the
interface. This would require modifying the interface building tool (in this case VB) or
parsing the differences between the original SILK-generated VB file and the newer
modified file. SILK could then use generic sketchy representations of the new VB-gen-
erated widgets. It would also be nice for SILK to use any application code that has
been written. This last feature makes the problem much more difficult to solve.

Finally, the one area where the transformation process could be significantly
extended is in trying to make use of the transitions that were drawn on the storyboard.
Since the transitions only simulate how a program might be implemented, directly
using the arrows to generate call-backs is a fairly ambiguous process. Generating such
a code skeleton is a challenging area of research. The arrows could be used to generate
code if the target language was HTML, which has a one-to-one mapping with SELK's
transition model (see Section 8.3.1). Section 8.1.3.4 describes how the system might
use the transition arrows as a demonstration that can be generalized to generate code.

5.3. SUMMARY 77

5.3 Summary
Besides allowing designers to create mock-ups of user interfaces, SILK has some sup-
port for the rest of the design process. In particular, SILK supports making annotations
on the sketches in order to document the design. In addition, screen transformations
allow designers to move their SILK sketches to a more appropriate tool, i.e., a user
interface builder, when the design ideas become more concrete.

78 CHAPTERS. SUPPORT FOR LATER DEVELOP-

CHAPTER 6

Evaluation

Although there is substantial evidence that an electronic sketching and storyboarding
tool would be useful for early user interface design, this thesis could only be confirmed
by building a system and testing it with actual designers. This chapter describes such
an evaluation of SILK. The chapter starts with a description of the usability test and
then presents both numerical and descriptive results. This is followed by an overview
of the engineering changes made as a result of participants using the system. The chap-
ter finishes with a discussion of the results, which confirm the thesis and show that
designers see applications where SILK, and in particular electronic storyboarding,
would be useful in their work.

6.1 Description of Usability Test
This section describes the objectives of the usability test, the methodology of the
study, how participants were selected, the design tasks used, and finally what was mea-
sured.

6.1.1 Objectives

There were three main objectives of the usability test. The first and most important
objective was to see whether designers could effectively use SILK to design user inter-
faces. The second objective was to see whether a tool like SILK permits designers to
communicate a design idea to other members of a design team, particularly engineers.
Finally, I wanted to see how well SILK performed, both in terms of its recognition
algorithms and its user interface.

79

80 CHAPTER 6. EVALUATION

6.1.1.1 Design Effectiveness

The main questions to answer in terms of design effectiveness are whether designers
can use SILK to produce non-trivial designs and whether SILK supports creativity.
Non-trivial designs tend to use several screens and offer interactive behavior. Support-
ing creativity, i.e., the exploration of a wide variety of design ideas, is very important
in the early stages of design. SILK will be considered to support creativity if designers
are able to work on more than one idea during the session, rather than fixating on a sin-
gle design and committing all of their available resources to it. Previous work has
found that electronic tools encourage designers to fixate on a single design rather than
exploring several ideas at the start of a design project [Black 1990; Goel 1995].

6.1.1.2 Communication Effectiveness

One of the important tasks in the early stages of design is to communicate a design
idea to other members of the design team, particularly engineers. Electronic sketching
and storyboards will be considered effective for communicating design ideas if engi-
neers are able to understand a design idea after a short discussion, if these discussions
concentrate on the structure and behavior of the interface, rather than the "look," or if
designers are able to make design changes in real-time as a result of these discussions.
An engineer will be said to show understanding of a design idea if they ask critical
questions that are more than just reactions to what is drawn on the screen.

6.1.1.3 System Performance

System performance is a question of how well my implementation of electronic
sketching works. I wanted to find any problems with the SILK user interface so that I
could refine it. I also wanted to see whether designers could understand what SILK
was doing, how easy the system was to learn, and how often the system performed the
correct operation from the user's point of view. SILK will be considered easy to learn
if designers are able to use the features that were taught to them in the SILK Tutorial.
Correct operation is a question of how well the editing gesture, primitive component,
and widget recognition algorithms work.

6.1.2 Task Environment and Materials

The operational conditions, user population, and task domain used were meant to rep-
resent a typical design environment. In particular, the tasks were performed in a room
with two computers and a moderate noise level. The users were chosen to be non-nov-
ices with respect to user interface design (see Section 6.1.4), and the chosen task (see
Section 6.1.5) was meant to be typical of the design problems a designer may need to
solve when designing a user interface.

The participants used an HP Snake Workstation (HP-735) with 92 MB of RAM.
The workstation ran Unix (HP-UX) and X Windows. The color monitor had a 17"

6.1. DESCRIPTION OF USABILITY TEST 81

diagonal effective viewing area. The computer used a round, three button, mouse that
comes standard with this workstation. The system was loaded with Allegro Common
Lisp and SILK running on top of the Lisp system. In addition, a video camera and
VCR with digital time stamping capability were used to record the sessions. SILK was
already running when the participant started the tasks, thus eliminating the need for the
participant to learn how to start the tools.

6.1.3 Method

The method of evaluation was to have each designer perform a set of design tasks. I
was the experimenter for the test. The test session was targeted to last around 4 hours.
No time limit on the experiment was enforced, except to encourage wrap-up of the
post-task engineering discussion.

For each participant, the session began by having the participant sign consent
forms (see Appendix Section B.l). Next, the experimenter read aloud some basic
information about the evaluation (see Appendix Section B.2). The participant was then
asked to supply some basic demographic data and information about their previous use
of interface design tools (see Appendix Section B.3).

The session was broken up into four major components: a short demonstration of
SILK (the script for this demonstration is included in Appendix Section B.5), a prac-
tice design task that served as a tutorial for the system, a second design task from
which measurements were taken, and a post-design discussion with an engineer.

The practice task was actually a written tutorial with quick reference manual (see
Appendix D, "SILK Tutorial and Reference") that led the designer through an example
design task to familiarize them with SILK before the evaluation task. The practice task
was not counted in the test results, although the amount of time the tutorial took to
complete was recorded. The participants took a short break after the tutorial.

All of the participants were then given an identical design problem (see Section
6.1.5). After finishing this task, an "engineer" who had read a similar task description
(see Appendix Section B.8) was brought in. The engineers were all CMU School of
Computer Science doctoral students who did not know the designers beforehand. The
designer was then asked to describe and demonstrate their designs, and the two were
encouraged to discuss the designs and possibly make changes.

Afterwards, the participants were given a short questionnaire to fill out (see
Appendix Section B.10 and B.ll). The questionnaire, some of which is based on
[Ravden 1989], tried to gauge whether the user liked the design methodology, whether
the method would be useful in practice, and also collected any other comments the

82 CHAPTER 6. EVALUATION

designers might have had. Finally, the participants were given an information sheet
that explained the goals of the experiment (see Appendix Section B.12).

In order to make sure that this test plan was appropriate, three pilot sessions were
run (using computer science students rather than design students). A few changes to
the study were made as a result of these pilots (e.g., which variables to measure) and
several bugs in SILK were fixed. The data from these pilot runs has not been counted
in the results.

6.1.4 Participants

The study used design participants who were intermediate or advanced user interface
designers. The criteria for deciding on the level of experience was based on whether
the participant had either been a practicing professional interface designer for more
than one year (advanced) or if they had taken at least one interface design course that
required a significant amount of work creating actual interface designs (intermediate).

If the participant was a novice with respect to user interface design, they would
have been rejected from the study. No participants met this novice design criteria. Par-
ticipants who lacked computer experience (i.e., were not familiar with using a com-
puter, keyboard, or mouse) would also have been rejected from the study. Again, no
participants met this computer novice criteria.

The participants were chosen from among the students and staff at Carnegie
Mellon University. The participants were found by asking members of the community
to volunteer. The design participants were given $25 for their time. In addition, a prize
of $100 was offered for the participant who designed the best interface as chosen by a
CMU Human-Computer Interaction Institute faculty member. The engineering partici-
pants were recruited by posting to the School of Computer Science electronic bulletin
board (cmu.cs.scs) and they were given $8 for their time. The rest of this section
reviews the demographic information supplied by both the designers and the engineers
who participated in the post-design evaluation.

6.1.4.1 Designer Demographics

Table 6-1 summarizes the information supplied by the designers1 at the start of the ses-
sion. The participants were evenly split along gender lines and had an average age of
30 years. Four of the six were considered advanced interface designers and two were

1. Note that the six design participants are numbered from 7 to 17 skipping evens. This is because each session
used two participants (a designer and an engineer) and there were three earlier pilot experiments.

6.1. DESCRIPTION OF USABILITY TEST 83

Designer Demographics

participant 7 9 i 11 13 15 17 mean median % yes
age 21 29: 41 33 21 33 29.7 31.0:
sex Male Female! Female Female Male Male ' 50% male

graduate program? no yes yes yes no N/A ! 60%
i

major
industrial

design

HCI-
interaction

design

communication,
planning, &

design

HCI-
interaction

design Hd design
years professional Ul

design experience 0.25
i

1.25! 0 2 2.5 5 1.8
i

1.61
advanced? ! no yes! no yes yes yes ! 67%

taken Ul design project
courses? yes yes! yes yes yes no ! 83%

Ul tools used: ! j ! i
HyperCard? no noi no no yes yes I 33%

Director? yes yes! yes yes yes yes 100%
Visual BASIC?! yes no! no no yes no ! i 33%

HTML?| no no! no no yes yes ' I 33%
C++ or Java? no no; no yes yes no ! 33%

used drawing/painting j
programs? yes

i

I
yesl yes yes yes yes 100%

read HCI books? yes yes i no yes yes yes I i 83%

Table 6-1. Demographic information and previous design experience of design participants.

considered intermediate designers. Participant 17 was a practicing interface designer
with a degree in design, while the remaining five participants were design students.
Three of the students were enrolled in graduate design programs and the others were
undergraduates taking an HCI or design major. All of the students had taken Ul design
courses that required a major design project as part of the course and most of the stu-
dents also had some professional work experience performing interface design.

All of the participants claimed to have used Director for Ul design, whereas only
a third mentioned using each of HyperCard, Visual BASIC, HTML, or a programming
language like C++ or Java. This seems consistent with the results of the informal
design survey (see Section 2.2.2.1). All of the participants had used drawing programs
(most commonly citing Photoshop and Illustrator). In addition, five of the six partici-
pants had read some HCI books. None of the design participants were familiar with
SILK.

6.1.4.2 Engineer Demographics

Table 6-2 summarizes the demographic information supplied by the engineers. All but
one were male and they had an average age of 27 years. They were all graduate stu-
dents, four in computer science, one in robotics, and one in language technology. All
but one had professional programming experience with an overall average of four
years.

84 CHAPTER 6. EVALUATION

Engineer Demographics

participant 8 10 12 i 14 ' 16 18 mean I median ! % yes
age 26! 33! 25! 27! 25 25 26.8! 25.5!
sex Male! Female; Male! Malej Male Male i 83% male

graduate program? yes! yes; yes! yes! yes yes 100%

major CS'
language!

robotics! technoloqy CS; CS CS 67% CS

years professional
programming experience 4i

I : :
I I I

9- 0i 2! 2 7 4.0 3.0
taken Ul design project

courses? no!
| i i

no no no' no no
i

0%
Ul tools used: i i ! ! !

HyperCard? yesi no; no! noi no no i ! 17%
Director? no! no; no! no: no no i ! o%

Visual BASIC? yes! no yes! no! no no ' I 33%
Tcl/Tk? yes1 yes: no no no no ! : 33%
Other? yes1 yes I no no i no no I i 33%

read HCI books? yes! no no no! no no ! 17%

Table 6-2. Demographic information and previous design experience of engineering
participants.

None of the engineers had taken a Ul design course and only one had read an
HCI book. Unlike the designers, none of the engineers had ever used Director and only
one had used HyperCard. Two of the engineers had used Visual Basic and two had
used Tcl/Tk [Ousterhout 1991]. Three of the engineers claimed to have never used a
Ul design or building tool.

6.1.5 Design Task

The task given to the designers was based on an interface design/evaluation problem
given in Nielsen's Usability Engineering [Nielson 1993, pp. 273-275]. Two of the par-
ticipants claimed to have read parts of this book, although neither had seen the exercise
in the back. The participants were asked to design an interface to a weather informa-
tion system designed for travelers. The system was to provide information about the
weather for the current day and to give weather predictions for the next two days. The
designers were told that the goal for the design task was to explore the possible design
space and eventually present several good alternatives to the rest of their design team
or a client (see Appendix Section B.7 for the exact task description).

6.1.6 Test Measures

In order to achieve the objectives given in Section 6.1.1, the measurements listed
below were taken for each design session by observing the participant's actions, auto-
matically logging events in SILK, video taping, and having the participants fill out a
post-evaluation questionnaire (see Appendix Section B.10). The measures are listed
under the objective they were meant to help determine.

6.1. DESCRIPTION OF USABILITY TEST 85

Design Effectiveness:

•The number of different designs produced.

•The complexity of the designs (in terms of number of screens and transitions).

•The amount of finished vs. sketchy text in the final designs.

•Were the designs restricted to the built-in widgets?

•Was run mode used while designing the interface?

•What the designer thought about SILK as a design tool compared to other tools.

•What the designer thought were the best and worst aspects of SILK.

•The amount of time to complete the task, starting from when the task description
was given to the designer and ending when the designer said they were finished.

Communication Effectiveness:

•Did the engineer ask critical questions in the post-design discussion that indi-
cated an understanding of the design ideas?

•Did the design discussion include issues of structure and behavior?

•Did the designer make real-time changes to a design as a result of the discussion?

•Was the storyboard used for testing the interface during the discussion?

•Was the storyboard used to illustrate the overall structure during the discussion?

System Performance:

•The number of times SILK made a mistake, i.e., the system inferred a widget or
gesture incorrectly. A more exact definition of this is given in Section 6.2.3.1.

•How well the designer thought the gesture recognition worked.

•Usability problems the designer had with SILK (both observed and reported).

•How long the designer took to work through the SILK tutorial.

•The designer's impression of SDLK's overall performance.

As SILK is an experimental system, it occasionally crashed. For all time-based
metrics, I subtracted the time it took to bring the system back up in the state it had
been before the crash. The raw time data is included in Appendix Section C.3. Note
that a verbal protocol was not used, but I recorded any comments/critical incidents the
participants made while performing the tutorial and the design task.

86 CHAPTER 6. EVALUATION

6.2 Results
The results of the study are given in terms of the three major objectives discussed in Sec-
tion 6.1.1. These results include numerical results (i.e., recognition accuracy and design
and session characterizations)2, descriptive observations3, and the in-session and post-
evaluation comments made by the participants4. These results show that SILK was an
effective tool for interface design, the tool also provided an effective way of communicat-
ing design ideas to engineers, and the system was not too hard to learn, although its imple-
mentation and performance could be improved in several areas.

6.2.1 Design Effectiveness

The design sessions were successful at showing that SILK could be used effectively to
design user interfaces. This section first characterizes the sketches produced during the
sessions to illustrate that these designs are non-trivial and that the designers did not fixate
on a single design idea. It then discusses the sessions themselves and describes how the
designer's took advantage of SILK's features and what their reactions were to these fea-
tures. Overall, the designers felt that SILK's "ability to prototype screen-based interac-
tions is GREAT," but that the tool needed better support for visual effects (such as type and
color) and more support for non-standard interactions. The section concludes with a sum-
mary of these missing design features.

6.2.1.1 Characterization of Designs Produced

The usability test produced information on the types of designs produced and how long it
took to create them. This data is summarized in Table 6-3. The data shows that the design-
ers each spent about 1.5 hours on the task and on average they came up with two different
designs. The designs varied, both between designers and for an individual designer
(although the designs for an individual designer often contained elements from a previous
design iteration). Figure 6-1 illustrates two different designs by participant 7. Although
vastly different, both designs use a table to display a multi-day weather forecast.

2. All of the numerical results refer to the design task, which was performed after completing the tutorial.

3. The observations are a result of notes I took during the experiment and after reviewing videotapes of the sessions.
The observations cover all three phases of the experiment: the tutorial, the design task, and the post-design engineer-
ing review.

4. The complete set of answers to the post-evaluation questionnaire are reproduced in Appendix Section C.5.

6.2. RESULTS 87

Task and Design Characteristics

participant 7 9 1 1 13 15 17 mean median stdev
task time 1:42 2:08 1:18 1:13 1:37 1:39 1:36 1:38 0:19
#designs 2 2 1 2 3 2 2.0 2.0 0.6
#screens 9 17 2 14 21 9 12.0 11.5 6.8

«transitions 20 38 0 30 81 15 30.7 25.0 27.9
screens /

design 4.5 8.5 2.0 7.0 7.0 4.5 5.6 5.8 2.4
transitions /

screen 2.2 2.2 0.0 2.1 3.9 1.7 2.0 2.2 1.2

Table 6-3. Task time and summary of characteristics of designs produced.

:;- SILK Slorybord

TRAVELwvathaE Daily I

ToBorroW* WMthar for
Piteaburoh i«i <'"" ";j

V^"**"*""»*" " .
I^^^S^",;
^^,—^_>-^> i >

-3BCT£
V. Sh<^tH^ Fore.«

J^*Hinfli J \ OULA \

TRAVELwMCh»_ _ ^ 5D«y ForcMtl

;. .; ris" r'^rZr *
if--; — "■*■■-■- [„^.„ j ^w i

\<—:i--:
jLsÜfeinga ± D»il$Srt«th.r Co«"

Figure 6-1. The two designs produced by participant 7 during the task.

88 CHAPTER 6. EVALUATION

SILK Slorybord t

Figure 6-2. One of two designs produced by participant 13.

Figure 6-2 shows one design from participant 13. In contrast to participant 7's
designs, this design uses a textual overlay on top of the map to display the weather
conditions. All of the designs are shown in Appendix Section C.4. This appendix also
includes the design changes made during the engineering discussions .

The designs used almost six different screens on average and there was an aver-
age of two transitions per screen. Two transitions per screen represents a relatively
small amount of interaction per screen as compared to a real interface, but it is enough
to support more than the simple linear screen flipping easily achieved with a tool like
Director. The designers typically used the storyboards to illustrate a few important
sequences. It is interesting to note that the tutorial used a similar amount of interaction:
four screens with an average of two transitions per screen

Participant 9's designs illustrate that using a large number of screens is indeed
manageable (see Figure 6-3). Participant 15's designs illustrate that too many transi-
tions on each such screen becomes messy and hard to understand (see Figure 6-4).
This particular design had so many transitions (almost four per screen) because the
designer chose to perform error handling for cases where the end-user did not input a
time and date or if the end-user chose geographical regions that had no weather data.

5. The numerical results presented in this chapter do not include the changes made during these discussions.

6.2. RESULTS 89

Figure 6-3. Participant 9's second design shows that a large number of screens is manageable.

Figure 6-4. The second design by participant 15 shows that a large number of transitions per
screen (in this case, almost 4 transitions/screen) can be hard to manage and understand.

90 CHAPTER 6. EVALUATION

SILK Storyboard \m\
Edit Sketch

■On Line

feather information

Today's date ^September 20, 1996

■ \

Information abou:^.

i«nter date

The Forecast for:

September, 20, 1996

Temperature 38 _,,<
167 '

Precipitation 2C* chance of rain

Winj J5 niph

Figure 6-5. The single design produced by participant 11. Note the small number of screens and
the lack of any transition arrows.

Note that participant 11, who had considerable difficulty with the SILK user
interface during the tutorial, created only one design and chose to use only two
screens, no interactive widgets, and no transitions between the screens (see Figure 6-
5). I believe this was due to this designer's difficulty using a two-button mouse (she
was used to a Macintosh) and to some problems in the interaction mechanism supplied
by Garnet for moving objects (as described in Section 1.4), which requires dragging
on a "drag" handle rather than on the object itself. These UI problems led to this
designer's frustration and a poor understanding of SILK's storyboarding model.

Four of the six designers added interaction for objects other than the built-in wid-
gets. This interaction was offered on custom interactive maps, tables of data, and
iconic buttons, and is another sign that the designs produced are non-trivial in nature.
This, together with the observation that the designs produced by each designer varied,
confirms the hypothesis that SILK supports creativity in the early stages of design.

Design Rankings

The designs were ranked by a faculty member in the Human-Computer Interaction
Institute at CMU. The following factors were considered: creativity, simplicity, func-
tionality, and visual appeal. In terms of functionality, the judge looked for designs that
supported simultaneous forecasts, a representation of the weather on the map, and a
graphical location selection method. Table 6-4 shows the rankings for each design.
The modified designs produced during the engineering discussions were not included
in the judging. One interesting item to note is that for the five designers who produced
more than one design, all but one produced a higher ranked design on their second
attempt. The winning design, participant 13's second, is shown in Figure 6-6.

6.2. RESULTS 91

Design Rankings

design
(desiqner-version) 7-1 7-2 9-1 9-2 11-1

| i

13-1 13-2 15-1
i

15-2 I 15-3 17-1 17-2
ranking 5 4l 9i 2| 12! 10! 1| 8 3' 7! 6! 11

Table 6-4. Rankings of designs produced during the usability test (a ranking of 1 is best).

Figure 6-6. Participant 13's second design was judged to be the best of the twelve considered.

92 CHAPTER 6. EVALUATION

6.2.1.2 Characterization of Design Sessions

The designers took advantage of many of SILK's features to achieve this design cre-
ativity and effectiveness. In particular, the roughness of the medium successfully sup-
ported both creative brainstorming and iterative refinement. The designers also took
advantage of the editing capabilities of the tool and the interaction provided by story-
boards. SILK's automatic widget recognition was appreciated by some, but often got
in the way. In response to this problem, the designers made a liberal use of Decorate
mode to create both static decorations and non-standard interactive objects.

Creative Design and Iterative Refinement

Overall, the designers were fairly positive about SILK as a tool for early creative
design. It was described as an "excellent 1st draft tool" that "would be good for novice
interface designers" and "useful for quickly structuring information." A few of the
designers still "would have liked using pencil and paper" but found that SILK was in
many ways similar to paper. One designer said she "saw missing pieces [in the design]
as I was working, which is the same way it works using paper. That's good!"

One important observation of the experiment was that the participants tended to
leave parts of the interface in an especially rough and ambiguous state. One example
of this ambiguity was that the designers did not spend much effort trying to align
objects exactly. They would put things roughly where they wanted them and move on
with the design. In addition, text was often left in its "squiggly" form or handwritten.
These objects were left rough until the end or when more details became known. In
fact, all but one of the designers had some squiggles or handwritten text in all of their
final designs. Approximately 29% of the text strings in the final designs were either
squiggles or handwritten text (see Table C-4 on page 175). I observed that in most
cases the typed text started out as a squiggle that was later replaced with the finished
text. This is a good example of iterative refinement.

The designers confirmed these observations when asked to discuss the features
of SILK that made it better than HyperCard and Director. Three of the six designers
said they liked the roughness or paper-like sketching that SILK provides. They appre-
ciated the "ability to be fast and sloppy" and the "way it remains sketchy." Another
said that the SILK "is great for giving the idea of a progression through a program
without getting into the details of the visual design. Often with tools like Director the
high level of visual detail misleads people to thinking more about the visual refinement
rather than the interaction." These observations and comments confirm the hypothesis
that an electronic sketching tool leads designers to focus on the overall interaction and
structure rather than on the detailed look-and-feel.

6.2. RESULTS 93

Editing

A second key observation was that most of the participants used cut, copy, and paste in
order to reuse widgets or portions of screens. In addition, they used these editing capa-
bilities to revise individual designs as they went. For example, participant 9 changed a
button panel to a radio button panel in the middle of a design. This editing capability is
something that users expect from any computer-based tool, but is not easy to do with
paper. These editing features are another win for electronic sketches over paper-based
sketches.

Interaction and Structural Overview

Another important hypothesized advantage of SILK over paper is the interaction it
provides for testing the design. One designer wrote that SILK was "as quick as paper
sketching and provides a basis for interaction." All but one of the designers took
advantage of this interaction by using transitions in their storyboards. Generally, the
designers took advantage of Run mode to test their design towards the end of their
work on a particular design. After running it, they would often notice that they had
either left out necessary transitions, objects, or screens. They would then make the
necessary changes and test it again. One designer said she "liked the ease with which
you could test the interaction - it's a very tight loop." Another commented, "the story-
board was nice - being able to draw arrows to indicate links was very fast." The
designers appreciated that the "storyboard view... is not only sequential (like movies)."

Storyboards also have the advantage of permitting designers to illustrate behav-
ior that the underlying tools do not directly support. Participants 9 and 15 confirmed
this advantage by repeatedly using Decorate mode to draw their own state feedback on
radio buttons. Although SILK offers feedback for these widgets, the state of the feed-
back is not saved between screen transitions. These designers had no problem seeing
how to use the storyboard transition model to implement the correct behavior. Partici-
pant 9 also implemented feedback for selecting columns from a table (i.e., she created
a new interactive widget).

Besides easily illustrating behavior in the storyboard, the designers liked the
ability to "see and edit the storyboard" and noted that a "view of information the users
need can be explored quickly" with SILK. Even participant 11, who had extreme diffi-
culties, saw the importance of "frame to frame" sequencing. Another wrote, "better
than Director - the linking with drawings rather than Lingo is excellent. Also you can
see right away what is going on."

This interaction and navigation via storyboards were the features of SILK that
the designers kept referring to in their spoken and written comments. In fact, five out
of the six designers mentioned storyboarding as the advantage of SILK over Director
and HyperCard.

94 CHAPTER 6. EVALUATION

Widget Recognition

Although all but one of the designers used SILK's built-in widgets in their designs, the
recognition accuracy was low enough to be a hindrance. One designer felt that the
"widget detection and sketching allows for fast low level interaction," but I observed
that many of the participants became frustrated when faced with repeated recognition
errors. Section 6.2.3.1 discusses the recognition performance in more detail.

Decorate Mode

It was interesting to see which features the designers used that were not covered in the
tutorial. For instance, the designers made liberal use of Decorate mode for static
objects, such as the maps and weather information commonly sketched during the
task. Although Decorate mode was shown in the pre-tutorial demonstration, it was not
used in the tutorial. Almost all of the designers started using it on their own. This could
indicate they found it useful for providing a second color or as a way to turn inferenc-
ing off. The participants rarely used widgets that were in the quick reference manual,
but not covered in the tutorial. For example, one user simulated her own pulldown
menus, but did not use the SILK defined ones. Others used a mixture of Decorate and
Sketch mode to illustrate widgets not directly supported by SILK, such as scrolling list
boxes (participant 9) and tables (see participant 7's designs in Figure 6-1). Similarly,
two designers used Annotate mode to document their designs, even though this was
not shown in the demonstration or tutorial.

6.2.1.3 Missing Features

Besides improving the performance of the system (see Section 6.2.3), the designers
felt that SILK needed to support more dynamic affects, such as "sprites," "roll overs,
perceptual cues, and movie-like transitions." In addition, several designers mentioned
problems manipulating the objects, a need for multiple text sizes and colors in Deco-
rate mode, and a way to visualize the links as they "got messy and were hard to fol-
low." Two designers hinted that a storyboarding model that combined the sketch and
storyboard windows and allowed drag and drop would improve SILK. One wanted a
way to share objects between the screens so that one editing change could be reflected
in several screens. Another commented that it would be nice if storyboards could be
"ported to/edited in Director/Hypercard."

Despite missing these features, the designs produced and the techniques used
during the sessions illustrate that SILK was still an effective tool for designing user
interfaces in the early stages of design. One designer summed it up well by saying that
SILK "works like pencil and paper; is simple, [and storyboards] show logic of naviga-
tion."

6.2. RESULTS 95

6.2.2 Communication Effectiveness

The post-design engineering review illustrated that SILK makes it easy for designers
and engineers to discuss a design and demo it, while not getting caught up in the
details of the look. The scaled-down size of the screens in the storyboard encouraged
lots of pointing to the different screens, permitting a productive discussion of the over-
all design.

Table 6-5 summarizes what occurred during the post-design discussion. Three of
the designers used the storyboard during the discussion in order to illustrate the overall
structure of the design. All of the participants, with the exception of participant 11,
used Run mode to exercise the interface during the design review. One of the designers
permitted the engineer test the interface. Even though participant 11 had no transitions
in her design, she was able to use the storyboard by repeatedly copying screens to the
sketch window to describe her "quick solution."

Engineering Discussion

question / participants 7 & 8 : 9 & 10 11 & 12 ; 3 & 14 15 & 16 i 17 & 18 % yes
enqineer asked critical questions? yes! yes! no! N/A: yes yes 67%
asked questions on structure & behavior? yes' yes yes N/A! yes yes 83%
made real-time chanqes? yes no! noi noi yes yes 50%
storyboard used to test? yes1 yes! no! yes; yes: yes 83%
storyboard used to illustrate structure? yes; no' yesi N/Ai no! yes 50%

' \ \ \ ':
67% successful communication of idea? yes: yes! no N/A yes: yes

Table 6-5. Characteristics of the post-design engineering discussion. Note that the data for
participants 13 & 14 is incomplete as the video tape ofthat discussion was not viewable.

Four of six of the engineers asked critical questions. For example, participant 8
(engineer) noted that participant 7's use of a calendar (see the top design in Figure 6-1)
to allow the retrieval of old weather reports was a bad idea. He said, "you are really
going out of your way to provide this weather log... It is constraining your design and
making it really hard to do the common case." In the next design session, participant
10 (engineer) asked about navigation; "what if I want to pop from here to another city
altogether. What is the most direct way to do it? To a city that is not on the map, say in
Arizona?" These questions and comments illustrate that the engineers understood the
interface designs and were looking for places where the ideas may have needed more
thought. I observed that these conversations concentrated on the structure and func-
tionality provided by the interface, rather than on the visual details.

96 CHAPTER 6. EVALUATION

Finally, half of the designers made real-time changes to their design during the
engineering discussions. For example, participant 7 used the feedback from the engi-
neer to rapidly modify his first design. The engineer commented that the original
design (see the top design in Figure 6-1) required too many mouse clicks to get the
desired weather information. The changes involved combining several screens, thus
compressing a five screen design down to a three screen design (see Figure 6-7). The
engineer and designer discussed which changes to make during a 15 minute conversa-
tion. The changes included deleting objects, resizing objects, moving objects between
screens, designing new objects, and making new screen transitions. These revisions
took under five minutes to make, so they could be done while the engineer was
present. These examples show that SILK successfully achieved the objective of allow-
ing designers to effectively communicate a design idea to other members of a design
team.

.iSILKStwyboird^ ±M
Edit Sketch

._.^S»pC«">"i'^'-,'j'

Figure 6-7. Revision of participant 7's first design made during engineering discussion.

6.2.3 System Performance

Overall, the designers were fairly positive about SILK (rating its performance at 6.2 on
a scale from 0 to 10), and mainly criticized it for specifics of the implementation and
the "UI of the tool itself." In addition to uncovering several bugs in the system, the
usability test brought to light some problems with the recognition algorithms (for ges-
tures, primitive components, and widgets) and with SILK's user interface in general.

6.2.3.1 Recognition Accuracy

SILK performs inferencing at three different levels: editing gesture recognition, primi-
tive recognition, and widget recognition. This section analyzes each of these processes
separately and reports the level of accuracy SILK achieved. Due to the lack of infor-
mation on the test subjects intentions while drawing, all of these metrics have some
amount of ambiguity, but are still reported here to give an estimation for how well the
system performs in practice.

6.2. RESULTS 97

Editing Gesture Recognition

Since the current implementation of SILK does not offer the user a way to correct mis-
recognized editing gestures, there is no way of knowing when SILK interpreted an
editing gesture incorrectly. This could be estimated by a more thorough review of the
videotapes combined with an attempt at inferring the participants intent. The alterna-
tive is to use the information SILK does record. The system reports whether a gesture
was classified or was found to be too ambiguous and thus unrecognized. Given these
constraints, this section reports the percentage of editing gestures that were classified.
This is an upper bound on the actual recognition rate, since some gestures may have
been misclassified rather than unrecognized. Thus, the classification rate is given by:

r =
e — u

Where e = total number of editing gestures drawn
u = number of unrecognized editing gestures

The data collected during the design task is given in Table 6-6. This table shows
that the participants had a mean recognition rate of about 89%. This is in contrast to a
rate of 82% achieved during the tutorial (see Table C-3 on page' 174). This difference
may not be significant6 or may be attributed to the user learning how to effectively
draw the gestures in order to achieve a higher recognition rate. This rate is in line with
the 92% rate Rubine found in a single participant test of his single-stroke gesture rec-
ognition algorithm using a classifier that was not trained by the participant [Rubine
1991b]. If the participant were given a chance to explicitly train the recognizer or if the
system were able to learn how a particular participant drew their editing gestures, this
rate might improve to somewhere above 95%. As gestures are not as easy to draw with
a mouse, this rate might also improve with the use of a stylus.

Editing Gesture Recognition

participant 7 9 1 11 I 13 i 15 I 17 mean ! median ! stdev
«editing gestures 67 139 63l 119 1511 78 1031 99 38

#unrecoqnized 3 17 8l 8 34 7 13|
88.7%

8:
89.4%

11
6.3% recognition rate 95.5% 87.8% 87.3% I 93.3% 77.5% 91.0%

Table 6-6. Editing gesture recognition data for design task.

6. The small number of data points makes it difficult to draw any statistical conclusions with a high degree of con-
fidence.

98 CHAPTER 6. EVALUATION

Surprisingly, five of the six designers stated that the editing gesture recognition
worked "well" or "OK". Some did comment that the system does better if the gestures
are drawn in a particular direction and that certain gestures did not work well for them.
Several of the designers experienced problems with different editing gestures: some
had problems with group, some with text insert (caret), and some with delete. The
main problem was that the subjects drew these in directions or orientations that were
different than those recommended in the tutorial (see Figure D-4 on page 203). A sim-
ple beep did not appear to give enough feedback when these gestures were unrecog-
nized. These problems could be alleviated by having a button panel that gives feedback
on the recognition results and by allowing corrections and on-the-fly learning as is
done with the primitive component recognizer.

Primitive Recognition

Unlike with editing gestures, SILK does permit the user to correct mistakes made by
the primitive component gesture recognizer. In fact, as described in Section 3.2.2,
these corrections are used to improve the recognizer as the system is used. In calculat-
ing the primitive recognition rate, only user-initiated corrections are considered errors.
Therefore, the primitive recognition rate for the primitive recognizer is given by:

Where p = total number of primitives drawn
c = number of primitive corrections

It is still possible that the recognizer will either misclassify primitives or label
them unrecognized, but the user may not care and thus choose not to correct the sys-
tem, so these are not counted as errors. These "don't care" primitives tend to occur
when the designer has drawn static graphics that are not part of widgets (without using
Decorate mode). Many of these misrecognized and unrecognized gestures can then be
considered correct inferences. Therefore, the following results represent an upper
bound on how well SILK actually identified the intended primitive.

The SILK usability test produced the results given in Table 6-7. These results
show that SILK correctly recognized the users's primitive components 93% of the
time. This is in contrast to the rate of 89% achieved during the tutorial (see Table C-3
on page 174). These recognition rates are quite encouraging, though they might also
be improved by using a stylus and tablet. Adding a similar mechanism, i.e., visible
feedback with corrections and learning, to the editing gesture recognizer seems to be a
promising change to make in the system.

6.2. RESULTS 99

Primitive Component Recognition

participant 7 9 11 ; 13 ! 15 17 mean median stdev

«primitives 120! 102 40; 55: 123 114 92 108: 36
«unrecognized 21! 20 20; 12: 13 38 21 20! 9
«corrections 9! 8 3! 0! 15 7 7

93.1%
8|

92.5%
5

3.9% recognition rate 92.5%! 92.2%! 92.5% i 100.0%: 87.8% 93.9%

Table 6-7. Primitive component recognition data for design task.

I also attempted to measure how much better this recognizer became by learning
while in use. Therefore, the results of a non-learning recognizer were recorded simul-
taneously. The non-learning primitive recognizer was assumed to be in error if its
result did not agree with the learning recognizer. This assumption would later be
reversed if the designer corrected the system and the correction agreed with the origi-
nal inference of the non-learning recognizer. This measurement showed that the non-
learning recognizer was correct only 72% of the time. However, these results are not
very accurate. The non-learning recognizer is unfairly penalized by the assumption
that the learning recognizer was right if the user did not correct it. If a "don't care"
primitive is classified differently by the learning and non-learning recognizers, this
measurement technique incorrectly assumes that the non-learning recognizer was in
error.

Poor feedback of primitive component inference results was responsible for most
of the confusion designers experienced with SILK's widget recognition algorithm. The
designers repeatedly failed to notice that one of the primitive components they wanted
grouped into a widget had earlier been misrecognized. They became confused when
repeated new guess, group, and ungroup operations were not helpful. One way to offer
better recognition feedback is to flash the primitive type or a rectified version of the
primitive on top of the sketch. This problem may also be alleviated in actual use if the
primitive recognizer continues to improve with training. One obstacle to this improve-
ment during the experiment was the fact that some participants had difficulty remem-
bering to correct primitive recognition errors. Thus, another potential solution is to
have the new guess button cause new primitive inferences, rather than only causing
new widget inferences.

Widget Recognition

The most important result, and possibly the hardest to measure, is how well SILK rec-
ognizes widgets. Some of the problems are similar to those discussed above for primi-
tive recognition. For example, we cannot know which inferences are made on widgets
that the designer does not care about. Another problem occurs when the designer

100 CHAPTER 6. EVALUATION

forces a new inference (via the New Guess button) on an object that cannot possibly be
one of the widgets recognized by SILK. Is that an error? Both of these problems relate
to not knowing the designer's intentions.

In assessing the performance of the widget recognizer, there are three cases that
must be considered:

•The designer draws the last piece of a widget and SILK proposes a widget type.

•The designer draws the last piece of a widget and SILK proposes nothing.

•The designer selects an object or multiple objects and requests a widget guess.

In the first case the designer can accept the proposed inference, click on an alter-
native if there are any, press the New Guess button to force a new inference, or break
up the combined object. The object can be broken up by selecting the Multiple-
objects alternative or by selecting ungroup from the Arrange menu. Therefore, each
time SILK proposes a widget type, the system keeps track of which option the user
takes. It is assumed that an inference was accepted if the designer did not choose one
of the other options either immediately or at a later point in time.

In the second case, where SILK proposes nothing, there is no data for the system
to record. If the designer really does desire an inference, she may select the object and
click on the New Guess button. Therefore the second and third cases can be combined
as far as measurements go. Note that the third case can result in either of the first two
cases, that is, SILK may or may not make an inference. Given these possible scenarios,
there are several results to report:

• The number of times SILK makes a first inference on a set of objects and how
often that inference is not accepted. When it is not accepted, either immediately
or later, we can report how often the designer tries to repair these inference
errors7 by selecting an alternative, clicking on New Guess, or breaking up the
object.

•The average number of correcting operations (selecting an alternative, clicking
on New Guess, or breaking up the object) per inference error. This gives an indi-
cation of how many operations it takes to fix an inference or how long until the
user gives up.

•How often the user explicitly selects an object, asks for an inference, and either
gets one or not. This gives an estimation of how often the user must force the sys-
tem to give an inference. If an inference is made, how well the system did is
reported by the above inference calculation.

7. Only the first correction is considered an error. Nor do repeated clicks on New Guess count as new inferences,
unless the designer cycles past Multiple_Objects to a new inference.

6.2. RESULTS 101

The value for the number of times the designer breaks up an object gives an esti-
mation of how often the system is picking the wrong objects altogether or inferencing
when it should not. One common exception to this was seen in the sessions when the
subject broke up text fields in order to reposition the newly typed text that had replaced
the original text squiggle. These breakups were still counted as errors.

The widget recognition results are given in Table 6-8. These results show that the
designers on average saw the right inference on 69% of the inferences SILK proposed.
SILK was correct on 68% (98) of the 144 total inferences combined from all the par-
ticipants. These results were brought down considerably by participant 15 who repeat-
edly broke up widgets (29 times). A large portion of this participant's breakups were
for moving text inside of text fields. In addition, this designer broke up many buttons
that he wanted to be unselectable to indicate that their functionality was unimple-
mented. This overall recognition rate is promising, but may still be too low for practi-
cal use. The rate could be improved by having the system learn new rules for inferring
widgets (as discussed in Section 3.7), allowing users to move components that are
inside of widgets without breaking them up first, and using a stylus and tablet instead
of a mouse.

The next measurement of interest is the average number of repairs per inference
error. A repair is an operation the designer made when attempting to correct an error.
The data shows that the designer's made about one repair on average for each error and
in the worse case one designer made just less than three repairs per error. This is
encouraging, though it may indicate that many errors were repaired using just one
operation while a few other errors generated several repair operations. In addition, we
do not know whether the user got the desired results or just gave up.

Widget Recognition

participant 7 9 11 I 13 I 15 17 mean median stdev
«widget inferences 41 17 2 14l 56 14 24 16 20

#errors 10 1 1 5! 26 3 8
69.4%

4
69.9%

10
16.7% recognition rate 75.6% 94.1% 50.0% 64.3%! 53.6% 78.6%

repairs: I
#new guesses 7 0 0 Ol 23 0 5 0 9

«changes 0 0 0 Ol 13 0 2 0 5
«broken 3 1 1 5 29 3 7

1.3
3

1.0
11

0.6 repairs/error 1.0 1.0 1.0 1.0i 2.5 1.0
«explicit inferences 11 1 0 4i 17 0 6 3 7
«explicit successes 2 1 0 11 11 0 3

52.0%
1

44.9%
4

38.0% explicit success rate 18.2% 100.0% 25.0%t 64.7%

Table 6-8. Widget recognition data for design task.

102 CHAPTER 6. EVALUATION

When the designer has not gotten an inference or wishes to change an inference
later, an explicit inferences can be made by selecting an object or group of objects and
pressing the New Guess button. The last measurement in Table 6-8 shows that almost
half the time the designer explicitly requested an inference, one was given. Many of
these requests may correspond to regrouping a text field after breaking it up in order to
move the typed text. The data on explicit inferences is not especially reliable, however,
since two of the designers never even made one explicit inference request.

Many of the participants were unable to get SILK to recognize widgets due to
hard-coded size constraints in SILK's rules. The most common example of this was
when the participants drew buttons that were wider than SILK's rules permitted. Some
participants discovered this on their own and resized the buttons in order to force the
correct recognition result. The sizes specified in the rules are fairly arbitrary and can
be increased. Machine learning of widget rules would also help here (as discussed in
Section 3.7). The participants also uncovered a few cases where new rules needed to
be added to SILK's existing set in order to support what was drawn. For example, sub-
ject 7 drew a scroll bar to the right (rather than the left or the bottom) of a window and
SILK did not recognize it as a scrolling window. Again, machine learning techniques
would allow adding these rules in a fairly automatic way.

One user liked the "ability of SILK to understand widget types," although he and
others were worried that "it won't understand non-standard widgets." Another designer
did not like "fiddling with the recognizer" and "towards the end, [he] just wanted to
grab widgets from a palette" because of continually having to "group and ungroup,
change guesses, and so on." The misrecognition of primitives and having problems
forcing the system to make a proper widget determination were the most common sys-
tem errors the designers cited. It is possible that any widget recognition algorithm may
be too error-prone and thus hurt the design process more than it helps. It is impossible
to cite a recognition rate (other than 100%) that would say definitively whether or not
widget recognition is worthwhile without testing such a system. My observations tell
me that the current rate (69%) is not good enough. If widget recognition cannot be
improved using the methods described above, a more explicit widget type or behav-
ioral specification technique may be worth looking into (as described in Section 8.1.2).

6.2.3.2 SILK UI Problems

The designers ran into several different problems with SILK's user interface, most fall-
ing into three general areas; users misunderstood the relationship between the story-
board and the sketch, how to enter and manipulate typed text, and how to select and
move objects.

6.2. RESULTS 103

Storyboarding Model

It is apparent from the study that the relationship between the SILK storyboard and
the SILK sketch windows was unclear to many of the designers. The sketches in these
two windows are distinct and must be manually synchronized by the user. Several
screens were lost when designers forgot to save them to the storyboard and then started
a new screen in the sketch window. In addition, the undo menu item was not imple-
mented for the storyboard window. This lack of undo in the storyboard caused sev-
eral screens to be lost when designers deleted them by mistake. The participants also
wanted to copy previously drawn objects out of the storyboard and drag them onto the
current sketch. Since the screens in the storyboard are uneditable, this required copy-
ing the current sketch to the storyboard (to save it), copying the screen with the desired
elements to the sketch, selecting and copying the elements to the copy buffer, copying
the saved screen back from the storyboard, and finally making the necessary changes
using paste.

These storyboarding problems could be solved by going to a new storyboarding
model. In this new model a single storyboard would contain all of the designer's
screens, without a separate sketch window. All editing would take place on the screens
in the storyboard. These screens could be scaled up or down as needed to make editing
easier. For example, the currently selected screen could be automatically blown up so
that its details could more easily be created and modified. This model would no longer
require the designer to perform complex synchronization operations, such as repeat-
edly copying and pasting parts of screens.

Selecting, Grouping, and Moving Objects

Most of the other problems encountered by the designers had to do with poor user
interface design choices made in both SILK and the underlying system SILK was built
upon, Garnet. All of the designers had a problem selecting, grouping, and moving
objects. The problems encountered with selection had to do with the mapping of
mouse buttons to SILK modes. The left button is held down while sketching widgets
and the middle button is held down while making editing gestures. The right mouse
button is not used so as to more easily support pen-based tablets (which typically have
only two buttons - one on the side of the pen and one on the pen tip).

The system interprets a single click of the left or middle button on the outline of
an object as a selection operation. The designers often had problems hitting the out-
line. In the case of the middle button, this causes nothing undesirable, but in the case
of the left button this may create a tiny object (possibly a single pixel). In addition, the
designers often used the left button when purposely clicking away from an object in
order to turn the selection off. Again, a spurious object was created. In both cases the
designer was forced to delete this spurious object. Many of the unrecognized primi-
tives were a result of these selection errors.

104 CHAPTER 6. EVALUATION

Given the design choice of using two buttons, this confusion is hard to eliminate.
The alternative would have been to use a single button. Overloading a single button
could be achieved by one of three options: (1) use one gesture recognizer for both edit-
ing gestures and primitive components, (2) use a time-out mechanism to decide
whether the user is performing an editing operation or simply sketching, or (3) add a
new mode that switches the pen between editing and sketching operations. The first
option would reduce the editing and primitive gesture recognition rates. The second
option may appear unpredictable to the user and thus generate more errors than the
current interface. The third option would probably be both confusing and time con-
suming.

Another problem was with grouping. The designers often created a large number
of small objects in their designs. When they wished to reuse or move these objects they
had to be selected one at a time, as SILK does not support dragging out a rubber band
box to select them. Although a grouping gesture (encircling the objects) is supported,
this irregular gesture is often poorly recognized by Rubine 's algorithm. This problem
may be solved by writing a special recognizer for this gesture.

By far the most common editing problem occurred when designers tried to move
objects. Most programs allow dragging an object by mousing down anywhere on the
object and moving the mouse. Garnet, as described in Section 1.4.1.3, instead supplies
white move handles (similar to the standard black grow handles) that appear on the
object when it is selected (see Figure 1-10 on page 13). The user is forced to move the
object by dragging on these handles with the left or middle mouse button. The design-
ers regularly forgot this or missed the handles. Again, this led to lots of unrecognized
editing gestures when the middle button was used and lots of spurious single-pixel
objects when the left button was used. Participant 11 repeated this error dozens of
times throughout the tutorial and design task.

Creating and Editing Typed Text

Another problem the participants commonly experienced was with creating and
manipulating typed text. Creating new typed text, replacing squiggly text, or editing
existing text are all accomplished by making a caret gesture at the text location (see
Figure 6-8). Unfortunately, the current implementation requires that the peak of the
caret gesture intersects with the bounding box of text to be edited or else a new text
object is created. At least three of the participants were unaware of this and repeatedly

Figure 6-8. Caret gesture for creating and editing typed text.

6.2. RESULTS 105

had problems getting the peak to intersect, thus creating a new text object where none
was wanted. This can be solved by having the caret gesture edit any text that the ges-
ture intersects with, not just the peak.

In addition, the participants struggled with the size of the text. Besides only
offering one font size, the usability test used larger than normal fonts in order to make
the resulting video more useful. Because of this, the participants often had problems
reproducing the screens in the tutorial (which used a smaller font) without having text
overflow the edges of their widgets. One participant (13) avoided this problem by
using the tutorial as only a guide and chose her own layout and text strings. Supporting
multi-line text labels, multiple font sizes, and scalable text would alleviate some of
these problems.

The final problem with typed text had to do with alignment. The previous obser-
vation about a lack of alignment activity was most commonly violated when the
designer was converting squiggly text to typed text. For example, replacing squiggly
text in text fields or buttons often led to the repositioning of the text object since its
size changed after the text replacement. Almost all of the participants ungrouped text
fields and buttons to reposition the labels. This indicates that it should be easier to
reposition objects contained inside of another object without having to use ungroup
and that SILK should automatically keep typed text to the left of the text field box, as
illustrated in Figure 6-9. Automatic alignment would have to use heuristics, as the
desired alignment often depends on the widget type (e.g., right-aligned text for text
fields, left-aligned text for radio buttons, and centered text for buttons).

. I To I I To 1 I

(a) (b) (c)

Figure 6-9. Replacing the squiggly text in (a) currently results in something like (b). A proposed
change would keep the inserted text right aligned with the text field box as in (c).

Most of the problems discussed here can be solved by offering better feedback to
the user, using machine learning techniques to improve the recognition of editing ges-
tures and widgets, and making some basic changes in SILK's user interface.

6.2.3.3 Learning and Agility

The participants worked through the entire SILK tutorial in 54 minutes on average.
This, coupled with the fact that five of the six designers were able to use the major fea-
tures of SILK taught to them during the tutorial (the recognized widgets, editing com-
mands and gestures, specifying behavior in the storyboard, and testing the design in
Run mode), indicates electronic sketching and storyboarding do not take much effort

106 CHAPTER 6. EVALUATION

to learn. One designer noted that the "tools are few and simple - it's easy to remember
all possible combinations of things." Addressing the recognition and user interface
problems discussed above may make the system even easier to learn.

In addition, improving the agility of the system may also improve its effective-
ness. Several of the designers noted the difficulty of sketching with a mouse and com-
mented that a pen and tablet would work better. SILK was designed to be used with a
display tablet , but I was unable to obtain one. In addition, SILK really slowed down
as the participants got near the end of the task. This was due to two reasons: as the
design sizes grew, file saves took a long time and there is a memory leak in the Lisp
environment the experiment used which led to frequent garbage collections near the
end of the task. The designers commented on both of these problems, reaffirming the
importance of fast tools for the early design phase.

The participants showed that SILK, with its current performance, will not
replace paper entirely in the early stages of user interface design. Participant 11, who
had the most problems, spent the first 13 minutes of the task designing on paper. This
was mainly due to the problems she experienced using SILK during the tutorial. Par-
ticipant 9 said she was "fighting the urge to go to my piece of paper" - she did so
momentarily later in the experiment when waiting for a long system save. Still, partic-
ipant 13 stated during the engineering discussion that SILK was "like pencil and
paper" and a "good quick sketching tool to get ideas down."

6.2.4 Summary of Results

In summary, the usability evaluation showed that SILK achieved two major goals:
designers are effective at using SILK for creating early user interfaces designs and
then communicating those ideas to other members of a design team. The designers
achieved these results by using SILK to quickly focus on the important design details,
edit the design, add interactivity to the design and test it, and finally demonstrate the
design to an engineer and modify it as needed.

6.3 Engineering Changes

As SILK is an experimental system, many bugs were found during the pilot and the
actual tests described in this chapter. This section discusses how decisions were made
on what bugs to fix, describes the type of bugs that were fixed, and gives an idea of
what known bugs remain.

8. I use the term display tablet for a unified stylus, tablet, and LCD display.

6.3. ENGINEERING CHANGES 107

6.3.1 Bug Fix Policy

My policy was to first fix any bugs found during the pilot that would not allow a partic-
ipant to complete the tutorial task. Then, any other bugs that had either an easy fix or
no obvious work-around were tackled. Finally, during the SILK usability test, the pol-
icy was to only fix bugs that could keep participants from performing operations
required to complete the tutorial. Bugs that crashed the system were of the highest pri-
ority. There was one exception to this policy, which will be described below.

6.3.2 Bugs Fixed

There were at least 32 bug fixes made as a result of the SILK usability test. Most of
these fixes were made during the pilot. The majority of the bug fixes made before the
actual experiment had to do with fixing selections, printing, and getting editing opera-
tions (e.g., cut, copy, paste, and clear) to work properly on storyboard screens.

Only five non-cosmetic fixes were made after the actual experiment started. Four
of the bugs had to do with storyboard transition arrows. The first two bug fixes were
made after the first participant's (7) session. This participant was unable to delete sto-
ryboard arrows (a side effect of an earlier bug fix). This was corrected before the next
participant was run. The second bug fix corrected a problem in detecting the object a
storyboard arrow was drawn from. A similar problem was found after the second par-
ticipant's (9) session. SILK was choosing the wrong object when arrows were drawn
from text fields. The participant worked around this by drawing a small object next to
the text field and drawing arrows from the new object instead. This bug was fixed after
participant 9's session. The final bug caused SILK to crash in rare situations when
deleting arrows. This bug was fixed just before the last participant's (17) session.

There was one bug fix that violated the bug fix policy stated above. Two of the
first three designers tried to draw buttons that used circles (rather than rectangles) as
the container. The non-recognition of these buttons caused considerable confusion, so
a new rule was quickly added after the third participant's (11) session and this problem
went away. At the same time, the rule was modified to allow wider buttons, as the par-
ticipants had also run into this problem. These fixes may have improved the widget
recognition statistics for the last three participants, but if so it would only be a small
improvement since the first three users all learned of the original limitation and a
work-around during the tutorial.

6.3.3 Bugs Remaining

As might be expected, there are many known bugs remaining in the system. These
bugs are distributed over a range of system functionality. The bugs include the follow-
ing: corruption in file saves, error dialogs over the wrong windows, cut/paste on story-

108 CHAPTER 6. EVALUATION

board arrows crashes the system, and clicks on objects in Run mode are not detected
properly in a few rare cases. Given enough time, all of these bugs are fixable and the
corrections should be made before the system is released.

6.4 Discussion

The usability test results, numerical and descriptive, suggest three important conclu-
sions: electronic storyboarding is a major win for the early stages of design, electronic
sketching is fairly easy to learn, and several engineering and tutorial changes would
make SILK much more usable.

The value of storyboarding was brought to light mainly in the descriptive results.
The designers repeatedly mentioned storyboarding as the feature they really liked and
found useful. In addition, the observations taken during the engineering discussion
showed that storyboarding, through both the interactivity and design overview it pro-
vides, helped designers to effectively convey their design ideas to engineers. Engineers
and designers were able to discuss changes and make these changes while the engineer
was present.

The designers found that storyboarding was fast and easy to learn. The fact that
several of the designers found that SILK was similar to pencil and paper made the tool
itself fairly easy to learn. Most of the designers were effective after a simple demon-
stration and a tutorial that took under an hour to complete. This was despite many bugs
and user interface problems with SILK itself.

Many of the problems the participants encountered with recognition errors can
be improved by offering better recognition feedback, using machine learning to
improve the default rules and recognizers, and improving the tutorial. The tutorial
needs to stress the importance of correcting inferences, rather than redrawing primitive
components, so that the recognizer will learn the user's style of sketching.

The main goal of this evaluation was to see whether designers could effectively
use SILK to design user interfaces. The usability test showed that this goal was met -
five of the six participating designers were effective using SILK. In addition, the
designers on average produced two different designs in about one and a half hours.
After the designs were finished, the designers were able to use SILK to demonstrate
the designs, have a productive discussion about the design with an engineer, and make
real-time changes to the designs. Finally, the designers uncovered several problems
with the current SILK user interface and recognition algorithms. Fortunately, most of
these problems have solutions.

CHAPTER 7
Related Work

Sketching on paper has always been used to explore early design ideas. Yet only
recently have the advantages of paper-based sketching over rigid electronic tools for
conceptual design been more formally explained. My application of sketching to the
electronic domain tries to take advantage of these results.

Similarly, though electronic design tools have been available for a number of
years, only recently have they become a standard day-to-day tool for designers work-
ing on the later stages of a design idea. This may have to do with the fact that many of
the early tools were research prototypes and that current commercial tools are often
targeted at producing either prototypes or finished interfaces, but do not offer support
for both tasks.

This chapter first looks at the previous work examining sketching in the design
process. It then looks at the important electronic tools that have been produced: includ-
ing prototyping tools, user interface builders, and other electronic sketching tools.
Finally, it reviews the work on informal and pen-based user interfaces, recognition
technologies, techniques to specify behavior, and the inference of graphical con-
straints.

7.1 Sketching on Paper
The work on paper-based sketching can be broken up into two main areas: the advan-
tages gained by sketching in terms of how others evaluate a given design and the
advantages gained in terms of improved design on the part of the designer.

109

110 CHAPTER 7. RELATED WORK

7.1.1 Sketching Improves Design Evaluations

Wong's work on scanning in hand-drawn interfaces was the major impetus for my
work in this area [Wong 1992]. This research, done within Apple's Advanced Technol-
ogy Group, was an outgrowth of Wong's frustration with her colleagues mistaking
early prototypes for more finished designs. This resulted in early design reviews that
focussed on alignment, colors, and fonts rather than on the overall structure of the
interaction. In order to allow her colleagues to focus on the important parts of the
interface, Wong sketched her interfaces on paper, scanned them in, and then added
behaviors to the sketchy interfaces by using Director [Macromedia 1994]. Since the
interfaces looked rough, her colleagues no longer mistook them for finished designs.

Wong had to go through the tedious process of scanning-in sketches. SILK
allows designers to create both the look and behavior of these interfaces directly with
the computer. In addition, adding the behavior in Director was difficult since it often
required writing code in Director's programming language, Lingo. SILK allows
designers, who generally do not know how to program, to demonstrate behaviors more
directly by simply drawing arrows between screens in the storyboard.

Another interesting observation about design evaluation comes from architec-
tural design. Strothotte reports that architects often sketch over printouts produced by
CAD tools before showing works in progress to clients [Strothotte 1994]. The reason-
ing is that clients who are shown precise drawings feel that the work is nearly finished
and that they have little say in how it might be changed at that stage. In fact, this group
has produced a system that can render precise architectural drawings in a sketchy look.
More recently, they have done a survey of architects and have found that architects
prefer sketches for a first draft, since they arouse interest in their designs and promote
more discussion of a given design [Schumann 1996]. This work lends further evidence
to the assertion that a different level of feedback is obtained from a sketchy drawing.

7.1.2 Sketching Encourages More Design Ideas

In addition to the observations about the positive effect sketches induce on design eval-
uations, others have found that sketches allow the designer to focus on the proper
design issues. Goel's cognitive science thesis [Goel 1995] examined how sketching
differed from structured drawing in order to argue that current versions of the compu-
tational theory of mind [Fodor 1975] fail to address sketching. Goel observed design-
ers who were asked to solve design problems by either sketching on paper or using a
computer-based drawing program.

Goel breaks design up into four distinct phases: problem structuring, preliminary
design, refinement, and detailing. He characterizes preliminary design "as a process of
creative, ill-structured problem solving, in which generating and exploring alternatives

7.2. USER INTERFACE SOFTWARE TOOLS 111

is facilitated through a coarseness of detail, a low commitment to ideas, and a large
number of lateral transformations." These transformations are facilitated by the ambi-
guity of sketches. Goel claims that a "notational symbol system, such as drafting,
which differs from sketching in being nondense and unambiguous, will hamper lateral
transformations."

Thus the ambiguity of marks in an early design is important, "because one does
not want to crystallize ideas too early and freeze design development." Goel observed
that in freehand sketching, when a new idea was generated, a number of variations
were quick to follow. In contrast to this, with a drawing program (in this case,
MacDraw) most subsequent effort after the initial generation was devoted to detailing
and refining the same idea.

These results are very similar to earlier work done by researchers studying
graphic design students. Black's user study found that "the finished appearance of
screen-produced drafts shifts [a designer's] attention from fundamental structural
issues" and caused designers to push computer-based designs further and explore
fewer alternatives than they would using paper-based designs [Black 1990].

7.2 User Interface Software Tools

There have been many user interface software tools produced by both the research
community and commercial concerns. This section reviews the earliest work and gives
an overview of some more recent tools. A more complete overview of user interface
software tools can be found in [Myers 1995]. The types of tools discussed have been
further divided into prototyping tools and user interface builders. Unlike user interface
prototyping tools, interface builders are generally used for producing the final applica-
tion. Prototyping tools allow designers to quickly illustrate examples of what the
screens in a program will look like.

7.2.1 User Interface Prototyping Tools

A survey of designers (see Chapter 2) showed that designers use prototyping tools
more often than user interface builders. The main reason for this is that current proto-
typing tools are aimed at an earlier stage of design than interface builders. In addition,
prototyping tools allow some end-user scripting, while not requiring programming in a
complex environment that includes compiling, linking, etc.

Trillium [Henderson Jr 1986] was one of the early research prototyping tools.
This Xerox PARC-produced tool was used for designing the physical user interfaces
for machines (such as Xerox copiers and printers). Trillium structured the interface as
a collection of frames (equivalent to screens in SILK). The system permitted the simu-

112 CHAPTER 7. RELATED WORK

lation of the prototype hardware user interface using a run-time interpreter rather than
requiring compiling and linking to an application program. Trillium allowed some
end-user extension of the look of objects, but most new objects or behavioral changes
required programming. The major weakness of Trillium is that it offered little support
for frame to frame transitions, since this was unnecessary for hardware user interface
panels.

Dan Bricklin's Demo [Lifeboat 1995] was one of the first commercially success-
ful prototyping tools. It allowed designers to mock-up the ASCII menu structure and
text input/output screens of MS-DOS programs. This simple tool allowed the design
team to prototype a user interface before the actual application code had been com-
pleted.

Prototyping tools are now commonly used by interface designers. Of the design-
ers I surveyed (see Appendix Section A.2), 48% used HyperCard, 45% used Director,
and 29% used Visual Basic. These were the three most popular user interface prototyp-
ing tools used by these designers (at the end of 1994). Though useful in the prototyp-
ing stages, all three tools come up short when used either in the early design stages or
for producing production-quality interfaces.

Apple's HyperCard [Apple 1993] was one of the first popular UI prototyping
tools for graphical applications. HyperCard's "programming" metaphor is based on
changing "cards" upon button presses. HyperCard shares many of the drawbacks of
traditional user interface builders: it requires designers to specify more design detail
than is desired, and often it must be extended with an event-based programming lan-
guage (HyperTalk) when the card metaphor is not powerful enough. In addition,
HyperCard cannot be used for most commercial-quality applications due to its poor
performance and lack of ability to pass off the design to another tool, which usually
forces the development team to reimplement the user interface with a different tool.
HyperCard's in-place card transitions were a major influence on SILK's storyboarding
transition scheme. Unlike HyperCard, however, SILK's event transitions are visible,
and several can be viewed at once. Thus, SILK storyboards may be easier to under-
stand and edit.

Director [Macromedia 1994] was designed primarily as a media integration tool.
Its strength is the ability to combine video, animation, audio, pictures, and text. This
ability, along with its powerful scripting language, Lingo, has made it the choice of
multimedia designers. These strengths, however, lead to weaknesses when used as a
general interface design tool. It is very hard to master the many intricate effects that
Director allows. In addition, it lacks support for creating standard user interface wid-
gets (e.g., scroll bars, menus, and buttons) and specifying their behavior in a straight-

7.2. USER INTERFACE SOFTWARE TOOLS 113

forward manner. Finally, Lingo, a full-powered programming language, is
inappropriate for non-programmers.

Design tools such as Director and HyperCard allow the sequencing of screens,
and although they use direct-manipulation methods to specify these sequences, these
methods lack the fluidity of paper-based storyboarding. For anything but the most sim-
ple sequences, these tools require the use of scripting languages.

This is also the major drawback to using Visual Basic [Microsoft 1993], which is
becoming increasingly popular for interface prototyping due to its complete widget set
and third-party support. There are literally hundreds of third-party VBXs available for
Visual Basic that add on new features, such as database engines, new widgets, and
spreadsheets. Visual Basic includes a standard drag-and-drop user interface builder,
yet it is considered a prototyping tool since the language it is based upon, Basic, is not
usually considered a production language, nor does it require the tedious compile/link/
test cycle of a hard to learn language such as C or C++ (the typical languages sup-
ported by user interface builders).

7.2.2 User Interface Builders

Unlike prototyping tools, user interface builders create the actual code for the applica-
tion user interface. They generally allow the designer to select widgets, such as dialog
boxes, menus, and windows from a predefined palette, and place them on the screen
with a mouse. They also allow the designer to set properties of the widgets, such as
size, position, color, and textual labels. Since user interface builders are used for pro-
ducing a finished application, these systems may generate code that is compiled and
linked with the rest of the application or they may generate some type of internal rep-
resentation that a User Interface Management System's (UIMS) run-time system can
use to implement the UI when the target application is executed.

MENULAY [Buxton 1983] was one of the first interactive UI builders and was
part of an early UIMS. It was used for laying out networks of menus that could be
structured in a hierarchic manner. It allowed the designer to assign function names to
be called on menu selections and to set object properties, such as position, color, and
size. The system produced a table that was converted to linkable C code via the
MAKEMENU system. MENULAY was quite limited in that it was only for laying out
textual or graphical objects that, when selected, would cause a new menu to appear.

Cardelli's Dialog Editor [Cardelli 1987; Cardelli 1988] was another of the early
user interface builders. It allowed the creation of graphical UIs that feature many of the
common widgets in use today (such as scroll bars, pulldown menus, text fields, but-
tons, etc.). In addition, it supported the graphical specification of stretching parameters
for the widgets, thus allowing the user to specify how the objects should change when

114 CHAPTER 7. RELATED WORK

the windows containing them were resized. The system produced code that was then
attached to Modula2+ event code.

The NeXT Interface Builder [NeXT 1991] was the first major commercial UI
builder. It allowed the standard layout of UI objects, but also supported connecting
actions to these objects by graphically "wiring" objects together. This style of visual
programming permitted much more of the UI to be specified in the UI builder, but it
still required programming (in Objective C or C++) to finish the interface. A NeXT
financed study claimed that applications using the NeXT environment (including the
Interface Builder) required 83% fewer lines of code and took one-half the time of
applications written with less advanced tools [Hamilton 1992]. Other popular Unix-
based interface builders include UIM/X by Visual Edge Software Ltd. [Software 1990]
and Devguide from Sun Microsystems [Sun 1991].

There are now dozens of user interface builders for Microsoft Windows. One of
the more interesting tools is Borland's Delphi [Borland 1996]. Delphi includes an
interface builder, programming language (based on Object Pascal), and debugger in a
nice interactive development environment that includes fast incremental linking.

There are several problems with the interface builders discussed in this section.
These tools are inappropriate for designers, since most designers do not know how to
program and the tools take too much time to learn and use in the early stages of user
interface design. Another major problem with interface builders is that they offer little
support for the "insides" of an application, that is, the graphics area in a drawing pro-
gram, CAD tool, or other style of visual editor. With SILK or one of the prototyping
tools described above, the designer can at least attempt to give a flavor of how these
graphics areas will look and work.

7.3 Informal Interfaces
Several researchers have recognized the benefits sketches provide (as discussed in Sec-
tion 7.1) in terms of communicating a level of informality or indicating the draft qual-
ity of a design. What distinguishes the work described in this section is a reliance on
standard mouse-based direct manipulation techniques for input, while using fancy ren-
dering schemes to make the output appear to be "sketchy".

As mentioned previously, researchers have produced a non-photorealistic Ten-
derer [Strothotte 1994] for an architectural CAD system. This system uses cubic
curves to represent lines; the control points of the curves are modified to make the
lines appear hand drawn. The editor allows setting parameters that affect line quality
on an object or group of objects. This allows the architect to focus the attention of a

7.3. INFORMAL INTERFA CES 115

viewer and elicit feedback on a portion of the design that is under consideration. One
drawback to such a system is that the design is still created using a precise representa-
tion, leading the designer to potentially focus on unimportant details. A similar system
is now a commercial product for PCs running Windows. Squiggle [Insight 1995] trans-
forms CAD files, in the standard HPGL plotter format, to sketchy drawings.

The EtchaPad system [Meyer 1996] is a drawing program based on PadDraw, the
drawing program supplied with Pad++ [Bederson 1994]. EtchaPad allows an end-user
to draw a small number of recognized widgets that can then perform PadDraw func-
tions that are normally accessed through menus. For example, the user can create a
new button that saves a file when the button is pressed. Other interesting widgets
include property widgets that allow the user to test and set values of object properties
in a very direct way and tool widgets that allow graphical operations, such as aligning
objects. The key idea is that these user interfaces are very light weight - a user might
create them during a work session and then throw them away when done. The system
uses Perlin's noise function [Perlin 1985] to give the drawings an informal look. The
amount of noise can be varied in order to change the level of informality. Unlike in
SILK, the widget recognition in EtchaPad is quite simple since there is a very limited
set of widgets, they are composed of unambiguous shapes, and widgets must have a
special diagonal "tick" line drawn in their upper left corner.

J-Sketch [Rieman 1996] is a novel attempt to make the appearance of mouse-
based electronic sketches resemble that of paper-based sketches, without sacrificing
the speed advantage often enjoyed by paper for rough sketches. Like the architectural
CAD system mentioned above, it uses cubic curves (specifically, Bezier curves) to
draw multiple overlapping smooth lines when the user draws a single line. An experi-
ment showed that users could produce rough sketches faster with J-Sketch than with
computer-based drawing applications and at about the same speed as with pencil and
paper. This same type of algorithm could be added to a system like SILK to make the
sketches look more like paper-based sketches.

In addition to the work of those exploring human-computer interaction issues,
after 30 years of pursuing the goal of photorealistic rendering there is a growing inter-
est in non-photorealistic rendering among computer graphics researchers. For exam-
ple, non-photorealistic rendering is one of the key features of the SKETCH system
described in Section 7.5. Researchers at the University of Washington have experi-
mented with several systems for rendering [Winkenbach 1994] and interactively creat-
ing [Salisbury 1994] drawings that look like "pen-and-ink illustrations".
Commercially, Fractal Design has produced a set of tools that are popular among
graphic artists because these tool produce effects that previously could only be made
using physical media. Painter [Design 1996] is a 2-D naturalistic painting system and
Sketcher [Design 1993] is a sketching tool that can also transform photos to a more

116 CHAPTER 7. RELATED WORK

handmade look. Both tools use randomness to emulate real-world media such as char-
coal, ink, oil paint, and pencil. Finally, Lansdown and Schofield give a review of the
non-photorealistic rendering techniques used in computer graphics [Lansdown 1995].

7.4 Pen-based User Interfaces
The major problem with the systems discussed in Section 7.3 is that they ignore the
advantages that pen-based input affords. Specifically, pen-based user interfaces offer a
form of interaction that can be even more direct than the pulldown-menu oriented
interaction traditionally provided with graphical user interfaces. These traditional
interfaces require the user to first select an object with the mouse, then move the
mouse to a pulldown menu or palette, and finally select an operation to perform on the
selected object. Pen-based user interfaces can easily take advantage of gestures (see
Section 7.6.4) to perform the selection and command with one stroke of the pen. In
addition, pen-based user interfaces naturally support informal sketches, while also per-
mitting more formal documents.

Sutherland's Sketchpad [Sutherland 1963] was the first system to explore pen-
based user interfaces (see Section 7.5 for a description of Sketchpad). This ground-
breaking effort was followed by pen-based application research at the Rand Corpora-
tion [Davis 1964]. Most of the Rand work was focused on handwriting and shape rec-
ognition.

In the mid-80s MCC's Interactive Worksurface Project developed a sketch-based
interactive tablet intended for experimenting with pen-based user interfaces [Martin
1990]. The system used an AI blackboard system to support recognition of different
types of data by several different recognition engines. The system supported handwrit-
ten numbers, letters, shapes, editing marks, and math symbols. The recognition
engines used neural networks, which unfortunately require large sets of training sam-
ples. This technique seemed inappropriate for SILK since designers seem to draw UI
components with their own look - SILK supports learning how an individual draws the
basic shapes that compose widgets.

IBM had a similar research project that focussed on using gestural interfaces to
support pen-based editing and markup of documents [Wolf 1989]. These user inter-
faces were termed "paper-like" to distinguish them from notepad computers that relied
on keyboard and mouse interaction. The paper-like applications were run on display
tablets^ that were attached to workstations running a modified version of the X-Win-
dow system [Rhyne 1991]. The research included work on producing recognizers for

1. I use the term display tablet for a unified stylus, tablet, and LCD display.

7.4. PEN-BASED USER INTERFACES 117

run-on (i.e., overlapping) handprinted characters [Fujisaki 1990] and a dialog inter-
preter [Rhyne 1987], which defined the language of symbols that could be combined
and the associated actions to be taken upon recognition. Some of the sample applica-
tions they explored included a cooperative meeting application with a shared elec-
tronic whiteboard, gestural spreadsheet editing, data-base inquiry, a sketching
program, a musical score editor, and a two-dimensional mathematical expression for-
matter. A user study of editing tasks using the Lotus 1-2-3 spreadsheet application
found that users completed the tasks in about 70% of the time required by keyboard
users. In addition, the subjects preferred the gestural tablet interface since the opera-
tions could be carried out quickly and the gestural commands were easier to remember
[Wolf 1988]. The sketching application differs distinctly from SILK in that the IBM
editor regularized the form of objects (i.e., "cleaned" them up), although it also
allowed freehand sketching, but without gestural editing.

The NPL electronic paper project [Brocklehurst 1991] was a British effort that
was very similar to the concurrent work at IBM. This display tablet-based system
offered a familiar model, i.e., paper and pencil, in an attempt to ease the learning of the
system. The work focussed on the recognition of gestures and handwritten cursive text.
The system used the standard proof readers' symbols as editing gestures. The cursive
text recognition was based on learning from the samples of 250 individuals combined
with learning the standard styles taught to school children. The sample applications
they built included a text editor (for previously typed or recognized text), a script edi-
tor for manipulating handwritten text prior to the deferred recognition, a table con-
struction tool, a graph/chart production tool, and a diagram editor. These tools differ
from the philosophy of SILK in that they try to clean up and recognize sketches (for
the tables, graphs, charts, and diagrams) after they are drawn.

The research work in pen-based interfaces was followed by attempts to make
pen-based computing a successful commercial venture. Go Corp. introduced a pen-
based operating system, PenPoint [Carr 1991; GO 1992], in the early 90's. The goal
was to become the standard operating systems vendor for pen-based tablet computers.
In addition to its focus on pen-based input, PenPoint was a fully functional object-ori-
ented operating system that supported application embedding, preemptive multi-task-
ing, and other attractive features. The only major commercial product that used
PenPoint was the Personal Communicator from EO.

The two main selling points for the EO machines had to do with mobility and the
social rules of meetings. First, a pen-based computer could be useful to the large num-
ber of mobile professionals (salespeople, medical personal, etc.) who were not using
computers in their daily work because of the difficulty of using keyboards while stand-
ing up. Second, typing on a laptop computer is socially unacceptable in most meeting
situations, whereas writing on a pad is not as intrusive. EO was eventually bought by

118 CHAPTER 7. RELATED WORK

AT&T and after disappointing sales the product was discontinued. Momenta Corp.
was another early pen-based computer start-up that failed in the pen-computing arena.
It appears that the EO and Momenta machines were not successful because they were
too expensive, too slow, and in the case of EO did not run user's existing software.

Microsoft tried to attack that last problem with Windows for Pen Computing, a
modification of its standard Windows operating system that offered pen support and
allowed pen-based computers to run standard Windows applications. Manufacturers
built dedicated pen-based machines or pen/keyboard hybrids, such as Compaq's popu-
lar Concerto, to take advantage of this OS. While not a runaway success, Microsoft's
product seems to be the safest choice for software developers and the customers pur-
chasing the hardware. Microsoft's support for pens changed with the release of Win-
dows 95. Now instead of integrating the pen support into the OS, Microsoft licenses
the pen services component to OEM tablet manufacturers, who can then create the
drivers to allow their hardware to work properly with Windows 95 applications.

Apple's Newton personal digital assistant (PDA) has certainly been the most suc-
cessful pen-based user interface in terms of units sold, although the first major version
faced a considerable amount of criticism and derision [Burgess 1993; Fehr-Snyder
1995] in the months after it was released (even in a popular comic strip). The main
problem was that the handwriting recognizer, although one of the best available at the
time, was not accurate enough. Unfortunately, both Apple's marketing and the early
overviews emphasized the ability of the device to recognize the user's handwriting - as
if handwriting recognition was considered the most important feature of this small
device. This is in contrast to the approach of GO, who emphasized the importance of
using a small set of gestures for editing and only using handwriting recognition in
fields that could be constrained by a data type (which would improve the recognition
accuracy). Since that time, Apple has released a major update of the Newton OS that
includes a much better handwriting recognizer. The reviews have been positive [Lu
1996; Seiter 1996], but it is unclear how much damage Apple did to the entire pen-
based market with their early Newton blunders.

Concurrent with the commercialization of pen-computing, researchers have con-
tinued to work on pen-based user interfaces. There has been several years of research
exploring interfaces for the LiveBoard [Elrod 1992], which is a whiteboard-sized, pen-
based, interactive display designed for use in conference rooms and classrooms. This
device is the one commercial outgrowth of Xerox PARC's work in ubiquitious com-
puting [Weiser 1993], which envisioned a future of inexpensive pad-based computers,
whiteboard-sized pen-based tablets, and numerous small devices the size of post-it
notes all connected together via wired and wireless networks.

7.5. SKETCHING TOOLS 119

Tivoli [Pedersen 1993], which is supplied with the LiveBoard, is a stroke-based
meeting support tool that allows participants to make meeting notes, diagrams, or dis-
play prepared presentations in front of a group. The tool uses a combination of static
interface widgets and gestures for editing the meeting notes. Tivoli supports remote
collaboration (shared drawing), multiple pages, imported images, and printing. Later
additions to Tivoli allow users to add structure to unstructured notes when needed, so
that structure does not get in the way of normal usage [Moran 1995]. The system tem-
porarily perceives the "implicit structures" in the sketch (as suggested by the Per-
Sketch system described in Section 7.6.5), such as lists, text, tables, and outlines.
Operations can then be carried out according to the expected behavior of the current
implicit structure, such as moving items around in an outline.

7.5 Sketching Tools
There has been a recent spurt of work on electronic sketching, some of it inspired by
early reports of SILK [Landay 1995a; Landay 1995b; Landay 1996a; Landay 1996b].
Like many areas in user interfaces and computer graphics, this area of research can
trace its roots back to Sutherland's original Sketchpad [Sutherland 1963]. Sutherland
used a light-pen to draw structured diagrams on one of the first graphics displays. Like
Sketchpad, many of the systems described below try to make sketching on the com-
puter easier and more powerful than paper in terms of editing. By adding interactive
behaviors, SILK takes this further and tries to embody Sutherland's comment made
over 30 years ago, "It is only worthwhile to make drawings on the computer if you get
something more out of the drawing than just a drawing" [Sutherland 1963, p. 17].

The Electronic Cocktail Napkin [Gross 1994; Gross 1996] allows architects to
sketch their designs on an electronic pad similar to the one used with SILK. Like
SILK, this gesture-based tool attempts to recognize the common graphic elements in
the application domain — architectural drawings. SILK differs in that it allows the
specification and testing of the behavior of the design, whereas the architectural draw-
ing is fairly static. The Electronic Cocktail Napkin also supports sketch-based queries
that are used to search for similar architectural designs either from a library or from
the past work of the designer.

Kramer's sketching system [Kramer 1994] is similar to SILK in its goal of sup-
porting a very fluid free-form design environment. This conceptual design system is
based on structuring a sketch as a set of translucent, non-rectangular patches. SILK
concentrates on user interfaces and allows the sketches to behave, whereas Kramer's
system allows attaching many different "dynamic interpretations" to patches, but sup-
ports only a limited set of actual interpreters. There have been proposals [Kolli 1993]
for building dedicated hardware sketch pads for industrial designers who desire a tool

120 CHAPTER 7. RELATED WORK

for conceptual design with the fluidity achieved in Kramer's system but without the
structure imposed by a system like SILK.

Pugh's work using interactive sketch interpretation for designing solid three-
dimensional objects [Pugh 1993] is relevant in that this system, called Viking, also
tries to bring the advantages of paper-based sketching to a computer-based tool. The
system used a constraint based approach to generate 3-D geometry from 2-D sketches.
Pugh's work differs in that it is for designing solid models and his sketches are really
precise line-drawings of the objects rather than the rough paper-like sketches sup-
ported by SILK and the systems described above.

The SKETCH system [Zeleznik 1996] from the Brown University Graphics
Group is, like Viking, designed for building three-dimensional scenes using a two-
dimensional interface. Unlike Pugh, the developers of SKETCH used an "approach
that is very similar to Landay and Myers' use of sketching" in SILK. That is, the end-
user sketches rough 2-D gestures that the system tries to group together in order to
infer 3-D objects. Since SKETCH is intended for early conceptual design of 3-D mod-
els, the tool renders the objects in a non-photorealistic style. SKETCH also uses ges-
tures for editing the scenes and supports simple constraints for object manipulation.
SKETCH differs from SILK in that the gestures used to create objects correspond to
partial drawings of important visual features - generally edges - of the intended 3-D
primitive, whereas in the easier 2-D domain SILK can use gestures that are quite simi-
lar to the intended object. Other than simple graphical constraints, SKETCH does not
address any issues of interactivity in the design.

7.6 Recognition Technologies

SILK's gesture recognition and widget inference algorithms are related to many differ-
ent recognition technologies. My work was not intended to expand on these technolo-
gies, but it is important to get an overview of the area to understand how SILK might
change with a different recognition system. In this section I give an overview of the
recognition process and then give a summary of the important systems that recognize
handwriting, sketches, gestures, shapes, and visual languages.

7.6.1 General Recognition Issues

Recognition-based user interfaces translate input in a form similar to that used for
human-human communication (e.g., speech, handwriting, drawings, and gestures) to a
format that is machine readable (e.g., ASCII text, point vectors, or commands). The
major problem with this style of input is that it is inherently ambiguous. Many of the
design issues deal with resolving this ambiguity and/or informing the user of it and
allowing the user to correct it.

7.6. RECOGNITION TECHNOLOGIES 121

Recognition proceeds in two phases: the recognition system is first trained to
associate input data with symbols and then, during actual use, uses the learned associ-
ations to translate a given input to symbols. The training and recognition phases often
use knowledge that is statistical, linguistic, or deductive in nature to produce the asso-
ciations. The symbols resulting from recognition may or may not be correct. Recogni-
tion errors fall into three categories: a failure to produce a result, an incorrect result in
terms of the symbols produced, or an improper grouping of input data. Since errors are
bound to occur, it is important to consider the accuracy requirements of the task (see a
discussion for handwriting recognition at the end of Section 7.6.2).

A complete treatment of the issues involved in designing recognition-based user
interfaces is found in [Rhyne 1993]. In the following sections we concentrate on rec-
ognition-based user interfaces for stylus input and/or sketches/diagrams.

7.6.2 Handwriting Recognition

Handwriting recognition has been an area of computer science research since Dimond
described his "stylator" in the late 1950s (cited in [Suen 1980]). There has been a
flurry of recent activity due to the predicted economic viability of pen-based comput-
ers, though such predictions have yet to come true.

Previous work in this area can be divided between on-line and off-line handwrit-
ing recognition systems. Off-line recognition, similar to optical character recognition
(OCR), recognizes writing that has been scanned from paper. On-line systems recog-
nize handwriting that is transmitted by an electronic tablet and stylus in real-time. Off-
line recognition has the limitation of not having access to data concerning the ordering
and timing of the strokes and the pen up/down events. On the other hand, unlike the
on-line case, off-line recognition is not limited by the constraints imposed by real-time
interactive responses and, if running on a portable pen-based computer, smaller mem-
ories and slower processing speeds. A good review of handwriting recognition, both
on-line and off-line, is given in [Senior 1992]. More complete reviews of handwriting
recognition can be found in [Suen 1980; Tappert 1990].

Most of the on-line work is based on calculating features found in an imaginary
rectangle, called a frame, that circumscribes the character under consideration. The
algorithms then differ on which features they calculate, how they recognize characters
based on those features, and how the characters are combined to recognize words (e.g.,
use a dictionary for context or treat the characters separately). Some of the early work
was based on zoning [Hussain 1972]. This technique divides the frame into several
zones and calculates a feature based on the densities of points in these different regions
and the order in which the zones were crossed by the pen stroke. This same technique
is used for the architectural sketch and gesture recognition used by the Electronic
Cocktail Napkin [Gross 1994] described in Section 7.5.

122 CHAPTER 7. RELATED WORK

Handwriting recognizers have finally gotten to the point where decent recogniz-
ers are being sold either to manufacturers to include in their products or directly to the
end-user to add on to an existing pen-based system. For example, the original cursive
handwriting recognition engine for the Apple Newton was developed by a Russian
firm, ParaGraph [Bylinksy 1993]. More recently, the Motorola Lexicus cursive hand-
writing recognition system, which is based on neural networks, has become available
as an add-on for several different stylus-based platforms [Hutheesing 1996]. Finally,
several shorthand recognizers are also available (see Section 7.6.2.1).

The relationship between the accuracy of handwriting recognizers and user satis-
faction has been shown to be highly task dependent [Frankish 1995]. For example, if
handwriting recognition gives a significant benefit in completing a task, users will tol-
erate errors. In addition, users demand a higher level of accuracy for work that will be
passed on to a superior than they would for personal notes or passing information to an
assistant or colleague [LaLomia 1994].

7.6.2.1 Shorthand

Due to the problems with handwriting recognition accuracy, there have been several
attempts at using new alphabets that are faster to use and more easily recognizable by
the computer. Unistrokes [Goldberg 1993], a research prototype from Xerox PARC,
uses an alphabet in which the letters have been reduced to symbols that can be easily
drawn and recognized with a single stroke of the pen. In addition, the more common
letters (based on English language usage) have been mapped to single line strokes,
which can be drawn very quickly. Unistrokes is based on the same principle as a stan-
dard typewriter keyboard: after learning the strokes (keyboard layout), an expert user
can enter text very quickly, but by looking at a cheat sheet (looking at the key caps)
novice users can also use the system, but at a much slower rate. Another research sys-
tem was Apple's T-Cube [Venolia 1994], which used single stroke gestures and pie-
menus, which addresses the user learning question ignored by Unistrokes, to enter
characters with a stylus.

A commercial product, Graffiti [Fitzgerald 1994; Lee 1994], was quick to follow
the research prototypes. It is much easier to learn than Unistrokes since it uses strokes
that are more similar to the standard English alphabet, but it is not as fast to use nor as
accurate. It is not as fast since it does not do as much optimization of the strokes for
the most common characters. It is not as accurate since it does not use an alphabet that
was designed for easy machine recognition. Unlike T-Cube, both Graffiti and Unis-
trokes can be used without looking at the screen, thus speeding up transcription or
allowing the user to pay attention to a speaker. Graffiti is now available for most of the
popular PDAs. The single stroke gestures used by SILK can be considered a shorthand
for their more complicated multi-stroke counterparts.

7.6. RECOGNITION TECHNOLOGIES 123

7.6.3 Sketch Recognition

Negoponte defined sketch recognition as:

the step by step resolution of the mismatch between the user's intentions (of which he himself
may not be aware) and his graphical articulations. In a design context, the convergence to a
match between the meaning and the graphical statement of that meaning is complicated by
continually changing intentions that result from the user's viewing his own graphical state-
ments. [Negroponte 1971] cited in [Negroponte 1973]

Negroponte's HUNCH [Negroponte 1973] was one of the early attempts at using
inferences about a sketch to transform it into a more finished design. This architectural
design system recorded stylus data from a pressure sensitive tablet. The system tried to
make inferences of the user's intention at three hierarchical levels: what was meant
graphically, in 2-D, what was meant physically, in 3-D, and what was meant architec-
turally. The system used heuristics to make some simple 2-D inferences, such as find-
ing lines and corners. The rate of drawing a shape was used as a heuristic to determine
whether a shape should be "cleaned-up" (such as making a square regular), left as is,
or possibly used as a gesture. The system would not interfere with the designer until
asked or triggered by recognized conflicts. HUNCH was meant to be "compatible with
any degree of formalization of the user's own thoughts."

Another early sketch recognition system tried to rely on batch processing after
the sketch was completed [Pavlidis 1985]. This work in scene beautification tried to
"clean up" a completed drawing that had been roughly sketched by satisfying the
inferred graphical constraints in the scene. Often, this method does not infer all of the
proper relationships on the first attempt and the operation of beautifying is not idem-
potent, thus leaving designers in the dark on how many times they need to execute the
beautifier to achieve the desired results. Trying to infer all possible relationships in a
scene at once is much harder than trying to infer only the relationships between one
object and the rest of the scene. In order to make this problem more tractable, more
recent work has tried to make inferences as the sketch was drawn [Karsenty 1992].
SILK takes the same approach: by getting user assistance as each object is drawn,
SILK further improves the speed and accuracy at which it can infer the correct wid-
gets.

There has been a considerable amount of sketch recognition work done in the
field of computer graphics. Like Negroponte's HUNCH, these systems are often meant
to allow designers to create 3-D objects using a 2-D sketching interface. Examples
include the SKETCH [Zeleznik 1996] system described previously (see Section 7.5),
the IDeS system [Branco 1994], and the early work described in [Hosaka 1977]. A
general review of the area is given by [Wang 1993].

124 CHAPTER 7. RELATED WORK

7.6A Gesture Recognition

Buxton performed much of the important work in gesture recognition [Buxton 1986].
More recent work by Rubine at CMU [Rubine 1991b; Rubine 1991c] has been used in
SILK. Rubine's algorithm uses statistical pattern recognition techniques in order to
train classifiers and recognize gestures. These techniques are used to create a classifier
based on the features extracted from several examples. In order to classify a given
input gesture, the algorithm computes the distinguishing features for the gesture, and
returns the best match with the learned gesture classes. This algorithm is limited to sin-
gle-stroke gestures.

Unless a gesture set has a paper-based counterpart that the user is already famil-
iar with, such as copy-editor marks, gestures can be hard to learn. Kurtenbach's mark-
ing menus are a novel attempt at making gestures self-revealing [Kurtenbach 1991a;
Kurtenbach 1991b]. Marking menus combine gesture recognition with pop-up pie-
menus [Callahan 1988]. Beginning users select a command from a series of pop-up
pie-menus, while more advanced users can make a fast gesture that requires the same
physical movements as required to traverse the pie-menus. The difference is that the
advanced user performs the movements fast enough so that the menus never appear.

Gesture recognition is an important component of many of the pen-based inter-
faces discussed previously (see Section 7.4). The selection of a useful gesture set was
one of the main topics of many of the listed research projects. In addition, I observed a
considerable amount of user-testing of the gesture set for PenPoint when I interned
with the GO Corporation in the summer of 1990.

7.6.5 Diagram/Shape/Image Recognition

Diagram editing is one of the common applications envisioned for pen-based comput-
ers and this area is quite similar to the sketch editing done with SILK. There have been
several attempts at building diagram editors based on either gesture recognition (see
Section 7.6.4) or visual languages (see Section 7.6.6). The thesis work of Zhao was an
attempt at integrating both approaches [Zhao 1993a; Zhao 1993b]. The key idea is to
use the diagram syntax to improve the low-level recognition. Unlike most visual lan-
guage parsers which consider a complete picture as input, Zhao's system uses an incre-
mental approach and also recognizes shapes that are made up of multiple-stroke
gestures, independent of pauses between strokes. The system is based on the coopera-
tion of two components. First, a low-level recognizer determines the class of symbols
drawn [Zhao 1992]. Then, if certain spatial constraints are met, a high-level recognizer
transforms the symbols into editing commands, thus allowing the system to work with
an editor that is ignorant of the sketch recognition being performed. The incremental
approach and the partitioning of the recognition into two pieces is very similar to what
is done in SILK, although Zhao's system regularizes the shapes as they are recognized.

7.6. RECOGNITION TECHNOLOGIES 125

A multi-stroke shape recognition algorithm is also used in the Graphic Diagram
Editor (GDE) [Apte 1993b]. Unlike Zhao's system, this shape recognizer uses a vari-
able length time-out after each stroke, proportional to the size of the preceding stroke,
to identify which strokes belong to which objects. A time-out solution is easy to imple-
ment, but it is unclear how well this works in practice. In addition, they compute the
convex hull of the strokes in order to close objects in which the strokes are not con-
nected. The recognizer uses a set of weighted filters to recognize six basic geometrical
shapes - thus, their recognizer is not very flexible, nor easily extendable. GDE was
implemented on top of the PenPoint operating system [Carr 1991; GO 1992]. The
algorithm achieved a recognition rate of 98% on the six supported shapes when ten
subjects were each asked to draw twenty examples. Again, like Zhao's system, GDE
regularizes the shapes as they are recognized.

The PerSketch system [Saund 1994] is a novel attempt at exploring WYPIWYG
(What You Perceive Is What You Get) image editors. That is, they adopt methods from
computer vision to recognize several alternative image structures, just as a human may
perceive an image in several different ways. For example, four separate lines forming a
rectangle may be perceived as four lines or as a rectangle. Both inferences are valid
and the PerSketch system would allow the user to manipulate the image with opera-
tions that make sense for either inference. Since the system tries to mimic how people
would perceive the drawing, it would even allow manipulating the individual sides of a
rectangle that was originally drawn with one stroke of the pen. "Pose matching"
enables users to select among several interpretations by using a gesture to indicate the
location, orientation, and elongation of the intended object.

Finally, there has been a considerable amount of work exploring visual lan-
guages and pen-based UIs at the University of Colorado. In addition to the work on
recognizing architectural sketches (see Section 7.5), researchers at Colorado have
explored diagram recognition for the capture and editing of visual languages on pen-
based computers [Citrin 1995; Citrin 1996]. Informal experiments suggest that pen-
based UIs are better than traditional palette-based interfaces for this domain [Apte
1993a; Citrin 1993]. The Colorado group had the novel idea of using inexpensive,
early-model Apple Newtons as a pad-based input mechanism for a diagram editor with
a recognizer running remotely on a desktop computer. The PDA performs low-level
shape recognition, while the back-end computer performs higher level semantic recog-
nition of the diagram using the Electronic Cocktail Napkin (see Section 7.5) as a rec-
ognition engine.

7.6.6 Visual Languages

Visual languages are another technique that can be used to recognize sketched input.
Visual programming systems support languages that allow the user to specify a pro-
gram in a two-(or more)-dimensional fashion [Myers 1990b]. Most visual program-

126 CHAPTER 7. RELATED WORK

ming systems are grammar-based and generate a parser from the definition of the
grammar, which may be textual. This section gives an overview of the important work
in the area and also discusses vmacs, a design system that is supported by visual lan-
guage parsers.

Lakin's vmacs [Lakin 1986; Lakin 1989] was intended as an electronic design
notebook for engineers. The system has been under development for many years and is
currently offered as a commercial product. Like Kramer's system and Kolli's proposed
Ideator (see Section 7.5), vmacs focuses on conceptual design. It allows the user to
write or draw whatever they want. Later, the user can choose the appropriate visual
language parser to add interpretation to different sections of the design. This is very
similar to Kramer's dynamic interpreters, but lacks the sketch-based input and instead
relies on mouse and keyboard. The system tries to be very flexible ("every graphic act
which is not prohibited is permitted") and agile ("agility... requires touch-typing").

One way to parse a visual language is to allow the user to produce a picture using
a standard visual editor. The picture and a description of the visual language are then
fed into a "spatial parser," producing a structure analogous to a parse tree for textual
languages [Golin 1990]. This was the approach taken by the Visual Programmer's
Workbench [Rubin 1990], an attempt to develop a set of tools for visual languages
analogous to the editors, lexical analyzers, parsers, compilers, and debuggers for text-
based programming languages.

Since visual languages typically express their semantics using relative relation-
ships, such as relative position, containment, or connectivity, language grammars that
include graphical constraints [Helm 1991] appear to be a promising way to build
visual language parsers. Most of the rules for SILK's widget recognition can be
defined in terms of graphical constraints. It is possible that these rules could have been
made declarative and then a constrained set grammar used to produce a parser. Unfor-
tunately, these parser generation tools were not available for the programming envi-
ronment I chose to use, Common Lisp and Garnet.

Commercial systems employing visual languages include Serius (reviewed in
[Landay 1991]), LabVIEW [Instruments 1989], and Prograph [Pictorius 1995]. More
complete surveys of visual languages can be found in [Chang 1986; Chang 1987; Shu
1988; Myers 1990b].

7.7. BEHA VIORAL SPECIFIC A TIONS 127

7.7 Behavioral Specifications
SILK's storyboarding mechanism is based on specifying screen shots from before and
after an end-user action. Chimera [Kurlander 1993] and Pursuit [Modugno 1993;
Modugno 1995] are both based on the before-and-after cartoon strip metaphor. SILK
differs in that it allows the designer to specify what these actions are, rather than trying
to infer this information from examples, as is done in Chimera and Pursuit. These sys-
tems are successful doing inferencing in their domains, graphical editing and graphical
shell file operations, respectively.

SILK storyboards are similar to finite state transition diagrams. These diagrams
have been used for UI specifications in the past, but have fallen into relative disuse
because of problems with the exponential blowup of the specification and an inability
to handle the dynamic nature of direct manipulation user interfaces. Statecharts [Harel
1987] overcome many of the problems of finite state transitions diagrams by adding
hierarchy, concurrency, and communication. Wellner's Statemaster [Wellner 1989] is a
UIMS that uses Statecharts for dialog specification. The proposed parallel storyboard
extension to SILK tries to attack the state explosion problem in a way that is similar to
Jacob's use of independent embedded state diagrams per object [Jacob 1986]. Again,
SILK is not intended for creating the entire specification, but instead to illustrate the
key sequences in the interface under consideration.

Two other relevant end-user programming systems are Agentsheets [Repenning
1992; Repenning 1993] and KidSim [Cypher 1995] (now called Cocoa). Both of these
systems use graphical rewrite rules to allow the creation of dynamic simulations. The
rewrite rules specify a graphical pre-condition that must be met. When it is met by the
state of the screen, the screen state is changed by the graphical action specified in the
rewrite rule. These systems focus on animated simulations, whereas SILK concen-
trates on end-user actions and the changes to the UI state that should occur upon those
actions.

7.8 Inferring Constraints
Peridot [Myers 1986; Myers 1988] was one of the first tools to apply artificial intelli-
gence (AI) techniques to aid in the construction of user interfaces. The user first draws
widgets using a drawing tool that is similar to a standard structured drawing editor.
Peridot then allows the user to specify much of an application's widget behavior by
demonstrating how the widgets behave in response to end-user input. The system uses
a simple rule system to make its inferences. SILK is similar in that it uses a rule system
to infer the widgets, which have previously defined behaviors. Other demonstrational

128 CHAPTER 7. RELATED WORK

user interface tools that have followed in the Peridot tradition include Lapidary [Myers
1989], Druid [Singh 1990], Demo [Wolber 1991; Fisher 1992], and Marquise [Myers
1993].

One of the major complaints about Peridot was that it confirmed its inferences by
asking questions. One of the principles behind SILK's design is that the inferences of
the system should be kept out of the designer's way until they have a need to deal with
the actual widget behavior. SILK indicates its inferences by both enabling a radio but-
ton that indicates the type in the SILK controls window and by allowing the widget
to behave when the designer manipulates it. Marks or symbols layered on top of the
interface were used for feedback indicating graphical constraints in Briar [Gleicher
1994] and Rockit [Karsenty 1992]. In Rockit, the marks kept the user informed of the
current inference of the system. This approach may be worth trying with SILK.

7.9 Summary

This chapter reviewed the large body of research related to electronic sketching and
storyboarding. This body of work was focussed in areas relevant to SILK, such as
sketching, user interface tools, informal interfaces, pen-based user interfaces, recogni-
tion technologies, and behavioral specifications. My research is unique in that it com-
bines these technologies, which permits designers to benefit from the advantages of
both sketching and electronic tools in the early stages of user interface design.

CHAPTER 8

Future Work

Previous chapters have outlined potential engineering extensions to SILK that would
improve the usability and functionality of the tool. While most of the previous discus-
sion considered additions that are simply a matter of implementation, this chapter con-
tains a discussion of those extensions that require solving difficult research problems.
The chapter closes with a few ideas on how to extend the ideas embodied by SILK to
other domains.

8.1 Extensions to SILK
Most of the potential improvements to SILK involve easing the specification of new
interactive behaviors. The other proposed improvements would allow SILK to fit in
more closely with the way people currently work: collaboratively and on paper. This
section discusses these improvements in more detail.

8.1.1 Specifying New Widget Behaviors

Recognizing new widgets refers to two related problems that are not yet solved in
SILK: recognizing known widgets that are sketched in a manner that differs from the
possibilities incorporated by SILK's rules and learning to recognize new widgets of
the user's own design. Machine learning is a possible answer to both of these prob-
lems, and a few techniques for learning new rules were discussed in Section 3.7. The
Electronic Cocktail Napkin [Gross 1996] shows that it is possible to build a system
where the designer guides the system and thus permits the learning of new relation-
ships and rules.

In a system that depends on the interactivity of the recognized objects, as SILK
does, simply learning to recognize new objects is insufficient. The system must also be
instructed on how the new widgets will behave. The informal design survey (see Sec-
tion 2.2.3) showed that designers often want to draw new widgets whose behavior is

129

130 CHAPTER 8. FUTURE WORK

analogous to that of a known widget. For example, designers frequently need to draw
a new icon and specify that it should act like a button.

There are two interesting ways to make use of analogous behaviors. First, a user
could train SILK to recognize a new widget and then inform the system that its behav-
ior is analogous to that of an existing widget. The system could then try to infer which
components of the two widgets serve the same purpose and thus infer how the individ-
ual components of the new widget behave. For example, the user may inform the sys-
tem that the slider in Figure 8-1 is similar to a scroll bar. The system would then infer
that the triangle is analogous to the scroll bar's elevator, free to move up and down
from the top to the bottom of the rectangle.

The second solution relies less on inferencing and requires more direct involve-
ment by the designer. After pointing out the analogous widget, the designer would
select (using direct manipulation) the mappings between the components in the two
widgets. The system would again try to infer how to adapt the existing behavior to the
new widget. The interesting research lies in how to successfully perform these infer-
ences and in finding a good interface for selecting analogous widgets and components.

Figure 8-1. A user-defined slider - the triangle can slide up and down next to the rectangle.

8.1. EXTENSIONS TO SILK 131

8.1.2 Explicit Widget Type / Behavior Specification

There are two promising alternatives to recognizing user interface widgets. The first is
to have the designer explicitly specify the widget type for a group of sketched objects.
The second technique involves having the user specify the abstract behaviors that a
group of objects should support. These methods are discussed in turn.

Requiring the designer to explicitly specify the type for all the interactive wid-
gets in a sketch is a tempting alternative to a possibly error-prone recognition process.
Explicit type specification would eliminate the problem of incorrect widget types, it
would allow the designer to concentrate on the sketch without paying attention to
SILK's inferences, and after sketching it only requires the designer's intervention on
the set of objects that need interactive behaviors, alleviating the need for decoration
mode. The problem with this technique is that it introduces a new inference problem:
inferring how the given objects operate given the specified type. For example, if the
designer draws an icon with a text label below it and calls it a button, the system must
infer what to highlight when the mouse is held down on this button. This inference
problem may or may not be easier than having to infer the type of sketched widgets
and learning how to recognize new widgets. Another problem is that the designer may
now have to do more work than with a recognition system that rarely errs.

The second technique, explicitly specifying abstract behaviors, trades-off the
inference problem with more work for the designer. Using this method, a designer
would attach low-level behaviors to individual widget components. For example, the
designer may attach "highlight on mouse-down" to the icon part of the new button
described above. Other supported behaviors may include slide (e.g., scroll bar) and
pop-up (e.g., menu). Supporting the state encoded in radio buttons may be a bit harder.
Again, the main drawback of this method is the designer has to spend a considerable
amount of time attaching low-level behaviors to widgets that may be easily recognized
and have known behaviors. A compromise may be to combine the two methods
together for use in different situations, i.e., specify widget types for standard-looking
widgets and specify low-level behaviors for custom-looking widgets.

Both of these explicit specification methods could be combined with the analo-
gous behavior method described in Section 8.1.1 for specifying the new behaviors.
Another possibility is to simply pick the types/behaviors from a list or palette. Deter-
mining if these techniques are better than widget recognition depends on how well the
recognition engine works in practice. If the recognition rate is so low that it generally
gets in the way of designers, one of these alternatives may work better. The recogni-
tion achieved during the SILK usability test (see Chapter 6, "Evaluation") is certainly
too low, but it remains to be seen how well this could be made to work using some of
the learning techniques described in Section 3.7.

132 CHAPTER 8. FUTURE WORK

8.1.3 Extending Storyboards

Another way to specify new behaviors is to storyboard them. The storyboarding exam-
ples given previously were for showing dynamic behavior between different widgets
and screens, but storyboarding can also be used to specify the behavior of a single wid-
get. For example, Figure 8-2 shows the screens and transitions necessary to define the
behavior of a two-item radio button panel. The behavior of new widgets can be added
in a similar same way.

Figure 8-2. Storyboard to illustrate the behavior of a pair of user-defined radio buttons. Note that
SILK's built-in radio buttons have a similar behavior by default.

8.1.3.1 Hierarchical Storyboards

The problem with this approach is that it would lead to a large blow-up in the number
of screens for any storyboard containing a widget defined this way. One solution is to
support hierarchical storyboards. The designer would first attach a storyboard to a
region of a given screen. For example, to use the radio button illustrated in Figure 8-2,
the designer would attach the storyboard to the region containing the radio button.
Then, any use of the radio button in another (higher-level) storyboard would transpar-
ently include the attached definition for the radio button's behavior. When the resulting
interface is tested, any events that occur within the bounding box of the radio button
will be handled by the radio button's associated storyboard and the screen transitions
would only affect its portion of the screen. This is a generalization of the technique
used by participants 9 and 15 during the SDLK usability test (see Section 6.2.1.2).

The same hierarchical design could be used to implement a palette of tools. The
harder research problems occur when the designer wishes to make a screen transition
that depends on the state of one of these newly defined widgets. For example, imagine
the user clicks on the drawing area in the screen illustrated in Figure 4-6 on page 65.
The designer would like to create either a rectangle or a circle depending on the state
of the palette. Currently, this cannot be specified for even SILK's built-in widgets -
finding a way to specify this easily is an open research question.

8.1. EXTENSIONS TO SILK 133

8.1.3.2 Drag Events

A previous discussion (see Section 4.7.4) centered on ways to extend SILK's story-
boarding model to support other input events (e.g., double click and timer). The neces-
sary changes to the storyboarding model needed for these events are quite
straightforward: add new arrows types for different kinds of events.

Drag events are not easily supported by this proposed extension. For drags that
are constrained to follow a path, the designer could simply draw a new drag arrow
from the object in question along the path the object must follow. This would work for
defining the elevator in a scroll bar (as seen in Figure 8-3). It is unclear what the
designer could use to indicate that the object may be dragged anywhere in a specified
region, rather than constrained to a single path.

" -T
SILKStoryboard j -* _jj

•'j
!|';.Edit-^Sketch ■■■

1|
z&

i *-■

~
■

 : ■*;,,• • I

Figure 8-3. Proposed drag arrow specifies dragging a scroll bar elevator within the scroll bar.

Similarly, for drag and drop, the end-point of a drag and drop arrow could indi-
cate the target object that can be dropped on. A connected arrow from the target object
could indicate the transition that should take place after the original object has been
dragged and dropped on the target object. For example, Figure 8-4 shows how a
designer might illustrate filling in the region of a blob by dragging and dropping a
paint can on the blob. This definition of drag and drop has a similar problem to that
described previously for drag. How does the designer indicate that the object can only
be dragged within a specified region? It may be enough to simply parameterize drag &

134 CHAPTER 8. FUTURE WORK

■:. SILK Storyboard K vm
Edit Sketch

Figure 8-4. Proposed drag and drop arrow (left) indicates that the paint pail can be dropped on
the blob to the right of it. Connected arrow (right) indicates that a screen transition should be

made after the drop has occurred - in this case filling the blob with paint.

drop arrows such that the dragged object must either follow the path of the arrow or be
permitted to move anywhere on the screen (but only dropped on the target object).

The difficult research problem is in determining which interactive behaviors are
necessary for prototyping in the early stages of design. The goal of SILK was to make
rough storyboarding quick and easy. This is why only single clicks are currently sup-
ported. If the system were to support all of the common interactive behaviors (e.g., the
six interactive behaviors included in the Garnet interactor model [Myers 1990a]), sto-
ryboarding could become overly complex - thus hard to learn and time-consuming to
use. If well-designed, it is possible that a more powerful storyboarding language could
be learned incrementally. This is an exciting area for new research.

8.1.3.3 Multimedia Support

The timer event (proposed in Section 4.7.4) can help a designer mock-up a video
application by representing the video as a sequence of rough sketches that automati-
cally transition after a time-out. Representing audio output in an interface would also
be easy if SILK included an interface for recording sound from a mike. In the spirit of
SILK's rough prototyping model, the designer would use speech to simulate non-
speech audio cues (e.g., saying "boom" to represent the sound of an explosion). Draw-
ing arrows to icons representing the recorded sounds (stored below the associated
screen) would indicate which event should cause the sound to be played back. Finally,
researchers in speech recognition have expressed an interest in using SILK story-
boards to prototype the dialog control in speech recognition applications.

8.1. EXTENSIONS TO SILK 135

8.1.3.4 Generating Program Structure from Arrows

One open-ended research problem is how to take better advantage of the program con-
trol indicated by the arrows in storyboards. That is, can program structure be derived
from the transitions used by a designer in a SILK-based prototype? Solutions to this
problem have two different applications. First, can the arrows be used to infer more
general behaviors at storyboarding time and thus reduce the complexity of the story-
board needed to illustrate a given behavior? An example of this (as discussed in Sec-
tion 4.7.2) is to infer that the rectangle in Figure 4-1 on page 57 should be rotated 60
degrees each time the button is pressed. It would be challenging to build a system that
can both make these inferences and give good feedback to the designer about the
results.

The second area that may be helped by analyzing arrow transitions is in improv-
ing the output of SILK's transformation process (see Section 5.2). Can the arrows be
used to generate the source code for callbacks in the final application? This may be
easy for dialog boxes and simple screen changes, but quite hard for more sophisticated
behaviors. The question of how do this or deciding whether the transitions even mimic
part of the callback structure are both open issues.

8.1.4 Collaborative Design Support

In addition to making SILK more powerful for the individual designer, it may be fruit-
ful to consider that interface design is generally a group task. I have seen this in the
design literature, in the comments collected during the designer survey (see Chapter 2,
"Informal Survey of Designers"), and by speaking with designers. Many of these
designers have pointed out the need for using design tools collaboratively. For
instance, one designer wrote, "The entire engineering team must be able to see it and
work with the sketch." As mentioned earlier (see Section 5.1), one way to support
group work is by having annotation layers for different members of a design team. If
these team members are sharing the same design file, then access and revision control
mechanisms are necessary.

As a design becomes more complex, simple drawn and written annotations may
not be enough. Members of the design team may wish to attach multimedia annota-
tions, such as speech, video, and animations. It is important to study what types of
annotations are needed and how they can be easily created, maintained, and viewed by
all members of the team. It may also be important to make viewing a context-sensitive
operation so that individual team members are initially shown only the annotations and
level of design detail that are particularly relevant to them. Determining how to easily
specify and infer such filtering properties is an open area of research.

136 CHAPTER 8. FUTURE WORK

In some cases this support for asynchronous design may be enough. But, often
group design occurs synchronously. There are two cases that must be considered: sup-
porting design teams that are collocated (that is, working in the same room) and sup-
porting design teams that are distributed at remote locations. In the first case, SILK
could be extended to support multiple input devices (e.g., two pens) working at the
same time. Another avenue of research is the use of speech recognition to improve the
inference engine results. The hypothesis is that if multiple designers are working
together, one may speak about what she is designing while sketching. Doing simple
keyword spotting on this speech may permit SILK to make its inferences with a higher
level of confidence.

As in the collocation case, multiple remote designers may wish to work on the
same design at the same time. Shared whiteboard tools have shown that this basic
functionality is not too hard to support. The difficulty comes in managing the work.
For example, which designer controls the floor at any one time? If the designers were
in the same room, they would use voice and other physical cues to enforce this control.
The important research issue is finding a proper floor control mechanism that does not
constrain this highly creative task.

SILK's storyboarding mechanism could prove useful for communicating a
design idea to a remote collaborator, much in the way that I have shown it was useful
in the case of collocated designers and engineers. The existing feedback mechanisms
(i.e., highlighting screens, objects, and transitions in the storyboard) would help
inform the remote user on what was causing the screen transitions and the visual lay-
out of the storyboard would help when giving overviews of the organization and struc-
ture of a design idea.

■*&*

There is a considerable amount of previous work in the field of collaborative
work, especially for supporting meetings. Finding techniques from this work that are
general enough for use with interface design would be the best approach for adding
collaborative support to SILK. SILK may change considerably, as it seems that when
multiple users are added to a design task, the problems have less to do with the design
tool itself and more to do with supporting an environment for communicating design
ideas and for storing and retrieving previous ideas and comments in an easily accessi-
ble design repository.

8.2. ADDITIONAL USER STUDIES 137

8.1.5 Paper-based Sketch Support

Another possibility for better supporting collaborative design situations is to integrate
SILK with existing paper-based sketches. This way designers can get the advantages
of paper in meetings: paper is very portable and easy to share. Later, the paper can be
scanned in, line following algorithms can be used to transform the scanned bitmaps to
strokes composed of point vectors, and then SILK's inferencing algorithms can be per-
formed on the strokes. The design can now be treated as if it was drawn on-line. The
designer can check the widgets and perform any necessary corrections. At this stage,
storyboard transitions can be added and the designer now has an interactive prototype.
What would be lost though is the interaction with the designer which helps to improve
the inference capabilities of the system.

8.2 Additional User Studies
Although paper-based sketching clearly has some advantages over computer-based
tools, the SILK usability test (see Chapter 6, "Evaluation") showed that designers
could use SILK for designing real user interfaces. In addition, the test showed that the
designers liked the roughness afforded by electronic sketching as well as the interac-
tivity achieved using storyboards. Further user studies could help demonstrate more
firmly which components of SILK are most important for effective interface design.

For example, a two condition study, one with storyboards and one without, could
help determine how important electronic storyboarding is to the design and communi-
cation of interfaces ideas. Another study might compare versions of SILK with and
without widget recognition. This would help to more accurately determine whether or
not the existing recognizer is helpful. Similarly, a Wizard of Oz study could be per-
formed to determine how well a perfect recognizer would work. That is, one of the
experimenters would supply SILK with the correct recognition inferences in real-time
so that it appeared as if the system made no inference errors. Finally, comparing SILK
to a version that cleaned-up the sketch would help to determine how important the
roughness of the sketch is for both the designer and eventual design reviews.

In addition, as SELK is made more robust, it could be directly compared to an
existing design tool (e.g., Director). One such experimental design is to have two
groups of designers perform a design task, half using SILK and half using the com-
mercial tool. A comparison of design time, number of different designs produced,
complexity of the designs, quality of the final designs, and subjective ratings by the
designers could help establish whether SBLK is a better tool for early stage user inter-
face design. A similar study could be performed to compare SILK with paper-based
sketching. Finally, a hybrid study would compare SILK and paper to a suite of tradi-
tional tools (e.g., paper, Illustrator, and Director).

138 CHAPTER 8. FUTURE WORK

8.3 Domains for Informal Communications
In addition to SILK's use in the early stages of user interface design, the same core
techniques can be used in a range of other applications. This section contains a discus-
sion of two such potential applications. Like SILK, these applications work well as
tools for informal communications. The first application, Web page design, is very
similar to user interface design. The second application, interactive dynamic presenta-
tions, is quite distinct from UI design.

8.3.1 Web Page Design

Web page design is quite similar to user interface design. Both web page design and
UI design are about communicating information through an interactive medium. Both
mediums take advantage of interactive widgets (e.g., scroll bars and buttons) and both
must be designed with the visual presentation in mind. The main difference is that web
pages tend to be more document-oriented than conventional application software and
that the primary model for moving between web pages is the single click of a hyper-
link (e.g., a button).

The fact that web page design is related to document design has led to a strong
market for graphics design professionals in this new on-line realm. As discussed previ-
ously, these designers are trained to make rough sketches when designing documents
to get a good idea of what the overall structure of the document will be before focusing
on the details. This is exactly the same design model that SILK supports. In addition,
the web hyperlinks correspond directly to SILK's storyboard arrows. The only major
change necessary to support web page design would be transforming the SILK story-
board to HTML (the language for specifying web pages). Additional web-specific wid-
gets could be added as necessary. For example, Figures 8-5 and 8-6 illustrate a rough
version of the CNN Interactive page (http: / /www. cnn. com/) from October 19, 1996.
No changes to SILK were necessary to mock-up these web pages.

8.3.2 Informal Dynamic Presentations

The attractive features of SILK - speedy creation, rough presentation, and ease of
illustrating interactive behaviors - are useful for domains other than interface design.
A new application, which I term informal dynamic presentations (IDPs), involves
using computer-based media as a visual aid in lectures, meetings, and computer-based
tutoring. Unlike existing presentation applications, IDP tools would be oriented
towards allowing portions of the presentation to have dynamic behavior. For example,
a presenter may be able to demonstrate a working simulation of a mechanical part
inside of a slide to illustrate how the part works. A user of an IDP tool would be able to
manipulate other common presentation objects (e.g., graphs, flow charts, and organiza-
tional charts) on the fly.

8.3. DOMAINS FOR INFORMAL COMMUNICATIONS 139

October 19, 1996 -- Updated 10:47 AM

Yeltsin moves to
replace Lebed

\J___j

Full Story

Figure 8-5. First screen for rough mock-up of CNN's web page.

;iSILKSIoryboard

Mit Sketch

'. Yvltsin »ovaa c« replaca L*b*d :

Figure 8-6. Storyboard for rough mock-up of CNN's web page.

140 CHAPTER 8. FUTURE WORK

The main difference between this proposed tool and existing tools would be an
orientation towards design and manipulation at presentation time. Since most people
can sketch rough drawings faster than building finished-looking versions with a draw-
ing program, the necessary diagrams could be sketched very quickly. In addition, sto-
ryboards could be used to rapidly illustrate behaviors. Thus, the user could make rough
sketches for the dynamic models and specify their behavior interactively - before or
possibly during the presentation. In addition, these models, like user interfaces, are
intended to support several different behaviors on any one slide, depending on the
dynamic needs of the talk. This is in contrast to existing presentation tools which pro-
mote a linear presentation of slides.

SILK's rule system could be adapted for recognizing common presentation dia-
grams (e.g., charts and graphs), so as to immediately support some common presenta-
tion-time behaviors. For example, clicking on a node of a graph might enlarge it and
thus focus attention on it. In addition, the storyboarding mechanism could be used to
illustrate other manipulations as needed. Lightweight dynamic presentation tools
could open up a new area of interesting research.

8.4 Summary

There are several interesting, yet challenging, extensions that can be made to SILK.
These range from improving SILK's ability to illustrate behavior to using more of the
information embedded in storyboards when transitioning to another tool later in the
design process. This chapter has made a brief attempt to describe some of the prob-
lems that must be solved for these extensions to be viable as well as describing other
new domains for SILK's informal communications model.

CHAPTER 9

Conclusions

This chapter summarizes the problems and successes of SILK's approach to user inter-
face design. In addition, the contributions of the research are reviewed.

9.1 Benefits of SILK's Approach
The design of SILK was based on discussions with the intended users of the system.
Through questionnaires and site visits, hand-drawn sketches and storyboards were
found to be common user interface design tools. Designers reported that current user
interface construction tools are a hindrance during the early stages of interface design.

SILK overcomes these problems by allowing designers to quickly sketch an
interface using an electronic stylus. Unlike paper sketches, SILK's storyboards allow
the designer or test subjects to interact with the sketch before it becomes a finalized
interface. The SILK usability test showed that designers saw a lot of promise in elec-
tronic sketching and storyboarding - they were able to investigate multiple interface
designs quickly. The usability test also illustrated that electronic sketches and story-
boards encourage a useful dialog between interface designers and software engineers.
Together, they can smoothly view, test, discuss, and modify early design ideas. An
interactive sketching tool that supports the entire interface design cycle has the poten-
tial to enable designers to produce better quality interfaces in a shorter amount of time
than current tools.

141

142 CHAPTER 9. CONCLUSIONS

9.2 Limitations of SILK's Approach
SILK has a number of limitations, some that were not within the scope of this research
and some that were. This section first delineates some of the areas in which this work
was not intended to contribute and then discusses the inherent limitations of the
approach.

9.2.1 Outside of Research Scope

There are simply too many important facets of a design tool to study all of them within
the confines of a Ph.D. thesis. However, many of these issues are essential to a func-
tioning system. Thus, a commercial system must provide some solution to most of
these problems. First of all, there are no successful algorithms for multi-stroke gesture
recognition available in the public domain. SILK used Rubine's single-stroke algo-
rithm. This turns out to be primarily a limitation for recognizing rectangles. The dis-
sertation discussed several possible solutions to this limitation (see Section 3.2.1.1).

The thesis did not introduce any new artificial intelligence techniques for infer-
ring widget types. Instead, a simple rule system was used. As discussed in Section 3.7,
machine learning techniques would have been helpful for both inferring widgets from
SILK's built-in set and for training the system to recognize new widgets that are drawn
by designers. A better inference mechanism combined with a more robust gesture rec-
ognizer would allow the designer to pay less attention to the results of the recognition
process and instead concentrate solely on their design.

Finally, SILK has no support for creating interfaces that include 3-D graphics,
speech recognition, and audio/video output. Such multimedia interfaces have become
more prominent since the start of this work. Other than 3-D graphics, SILK has the
potential to help design interfaces that contain any of these other input and output
modalities (see Section 8.1.3.3).

9.2.2 Inappropriate Domains for SILK

Although SILK was designed as a tool for early, creative, user interface design, there
are some interface design tasks for which SILK's sketch-based approach is clearly
inappropriate. For example, SILK would not be very useful for designing small
changes to the interface of an existing product. The design team would be better served
by making the changes to the existing product and trying the resulting system out with
users. There are also specific application domains where SILK would not be helpful.
These domains include non-visual interfaces, dynamic interfaces, and textual inter-
faces. The rest of this subsection treats each of these in turn.

9.3. CONTRIBUTIONS 143

First, interfaces that are non-visual in nature, such as telephone interfaces or
interfaces for the blind that rely primarily on speech recognition and audio feedback,
will not get much help from a sketching tool. SILK could be used to help the designer
structure their thoughts at a systems level, but the tool would be of no help when
designing the actual speech/audio user interface.

Second, while SELK's storyboarding model could be extended to support anima-
tion, dragging, and other dynamic events, it is not clear that this model is appropriate
for designing application interfaces that have few static elements and are primarily
made up of time-varying information. Such applications include flight simulators,
video players, or complex computer games.

Finally, rather than supporting free-form text editing, SILK is oriented towards
the interfaces found in graphical editors and simple forms-based applications. Thus,
SILK would not be an appropriate tool for designing the interaction found in the work
window of a word processor or spreadsheet. Fortunately, there are few examples of
dynamic or text-based interfaces that do not include standard widgets around them.
SILK could still be used for designing those parts of the user interface.

9.3 Contributions
SILK demonstrates that electronic sketches and storyboards can be successfully used
to prototype user interfaces in the early stages of design. This section groups the spe-
cific contributions of the research into concepts and techniques, artifacts, and experi-
mental results.

9.3.1 Concepts and Techniques

To reach its goals, this dissertation introduced several new concepts and techniques.
First, I developed a new methodology, electronic sketching, for designing user inter-
faces. In addition, SILK's electronic storyboarding is a novel method for illustrating
the behavior of a user interface without requiring conventional programming. SILK
also includes feedback and editing techniques for manipulating these behavioral speci-
fications, which are sorely lacking in current demonstrational and direct-manipulation
systems. Finally, the sketch recognition system shows that in the domain of 2-D user
interfaces it is possible to recognize common user interface widgets. The complete set
of concepts and techniques are listed below.

144 CHAPTER 9. CONCLUSIONS

Concepts and Techniques:

•electronic sketching for UI design

- gesture recognition for recognizing and editing primitive components

- automatic recognition of sketched widgets

- automatically adding basic interactive behavior to sketched widgets

• electronic storyboarding

- a way to add dynamic behavior to interface screens

- a visual representation for storing related screens

- using arrows for indicating screen transitions

- graphical feedback at run-time to indicate what caused the last transition

• design memory mechanisms

- sketched, typed, and written annotations on designs

- ability to search typed design annotations

• screen transformations to real widgets in a standard look-and-feel

9.3.2 Artifacts

The research also produced two artifacts, the system itself and a widget recognition
algorithm. SILK is the first tool designed for use during the early phases of interface
design by professional user interface designers. By supporting the transformation of
SILK sketches to a standard widget format SILK can assist all phases of the interface
design cycle. The research produced a complete enough implementation for use by
designers wishing to experiment with this new methodology. In addition, the disserta-
tion includes a widget recognition algorithm that can be applied to other domains.

9.3.3 Experimental Results

The dissertation also describes several experimental results. First, the informal survey
of designers illustrates that designers are dissatisfied with the existing tools and meth-
ods used in the early stages of user interface design. Usability testing shows that SILK
is indeed usable for quickly generating several interface designs in these early stages.
Several of the designers were even able to use it to create new interactive widgets that
were not built-in to the system. The testing also illustrates that SILK allows designers
to effectively communicate design ideas to engineers. In fact, the designers and engi-
neers were able to discuss the designs and make changes to them while the engineers
were present. The evaluation also shows that designers are excited by the prospects of
using electronic storyboarding instead of programming languages for illustrating inter-
active behaviors. Finally, SILK demonstrates a domain where sketching is appropriate
as the primary interface to a system.

9.4. FINAL REMARKS 145

9.4 Final Remarks

This thesis set out to investigate a way of enabling user interface designers to take
advantage of computer-based sketching tools in the early stages of user interface
design. The research met its goal. This dissertation discusses interesting solutions to
many problems. For example, to keep designers and evaluators from focussing on the
wrong details in the early stages of design, I developed the idea of sketching widgets,
recognizing their types, and leaving them rough. To address the problem of illustrating
interactive behavior, SILK introduced electronic storyboards. Finally, to support the
later stages of design, screen transformations were added. Computer-based sketching
is a key step to a future in which much of a user interface will be illustrated, created,
and tested by a user interface designer rather than by programmers writing the code.
Finally, this work shows the promise of using informal communications techniques,
such as sketching, in several other domains.

146 CHAPTER 9. CONCLUSIONS

APPENDIX A

Design Survey Materials and Data

This appendix includes the materials and data used for the design survey described in
Chapter 2. Section A. 1 contains the original design questionnaire e-mailed to approxi-
mately 300 subscribers of the visual design mailing list. Section A.2 includes tables
that summarize the answers of the 31 designers who responded. Note that the answers
shown for question 3b were derived by performing a simple content analysis on the
written answers to that question.

A.l Questionnaire

I'm a Ph.D. student at Carnegie Mellon and I am developing a UI design tool. I'd
appreciate it if any professional designers out there would take 10-15 minutes to
respond to the following survey concerning your use of interface design tools.

James Landay

1. What is your background?

 graphic design art other (please specify)

2. How many years have you been designing user interfaces?

3a. When you begin to design an interface, what tools do you use? (check all
that apply)

 pencil & paper whiteboard and markers software

3b. Why? What are the strengths and weaknesses at this stage of design?

147

148

4. Have you ever used interface builders or prototyping tools? Please list which
ones along with their strengths and weaknesses.

5. I'm working on an interactive tool that allows designers to quickly sketch an
interface using an electronic pad and pen. Unlike a paper sketch, this electronic
"sketch" will respond to user input to allow testing of the interactions, and will
also support editing of the sketched interfaces. When the designer is satisfied
with this early prototype, the system will transform the sketch into a more fin-
ished interface in the specified look-and-feel of a standard graphic user interface,
such as Motif or the Macintosh. This transformation takes place with the guid-
ance of the designer.

a) What do you think would be the strengths and weaknesses of this tool?

b) Would you be interested in using such a tool?

6. What kinds of interfaces do you typically sketch? Please estimate what percent
of your work is in designing interfaces of the following types:

 Widgets from a toolkit (buttons, scroll bars, etc.)

 Custom widgets you designed (new kinds of buttons, etc.)

 Static graphics and decorations (icons, etc.)

 Interactive graphical objects (rectangles, circles, or icons that can be edited)

 Multimedia (video, sound, CD-ROM, etc.)

 Other (please describe)

7. I'd appreciate it if you could send me copies of actual sketches drawn early in
the design process for a user interface. We can use these to see what types of
widgets people sketch and how they draw them. This will allow us to tune our
system to recognized these widgets. All sketches sent will be kept confidential (if
you can't send new ones, sketches from older products or designs are also wel-
come).

A.2. SUMMARY OF DATA 149

A.2 Summary of Data
co; i- 1 vj>! vgl i vp; ^pi sPi *p: spl vP ; 5"- -ip| vPl -spi *P

Cf* C?'' ff* ■ ev* ^ 1 vP' -sPI vP! vP
! e>! CT"1 (>(3^ •^s ^9

^y <o O CD ! O CO; Oil CO! CM! i- ! CO ^ CO CO ^* CO i CO, O! &■ «c* o> CO
>i o: to , co-co; coi co cji T- i co <o CO. CO rf CO ; oj! CSJI CM;

o .^ i~ ! i i i ! '
Ol fei o,

U;
! ! 1 ! M i | i

; 1 !

[: i j ! ! !

< | ! ! 1 1 1 1 i 1 1 1 1 .
! 1 1

CO CO! CO IT-! 1 | 1 1 i ! 1 ■*-!-»■ !-?-]-?- o
c j s?i asi 5?

1~ >i ! i • i . j ' j j 1 Ol oj o o- o o
\ i ! i ; i '. i i ! i | ■ j 1 1

1 I o

1- 0) Tf b->j 1 !-?■!-?-! j i i i [\~T
CO : •*$} Vp' vPl vP! ^' ^ ; ^*i 5^i S^i tf^ 5^ o^ >;

■ i i ! ! j ; i i
1 ; : I i

>
!CM; ;^! 11-1 CO : ;

<o CO. ^- !~?-i-f\ 1 \~>i [!->!•>• :~?-' o
c ssississlsslss ^e ' >> I ; ; ' ' ■ : i | I : I ml o1 o; ol o m

I 1 I ; t n»; CM

in
ftjN H ■ I-J-ITI '■ <-r\ !~*"i i">!"> (0 is?; s« vp; vgi ^P

e>-l e>! e> ss ' >I > i o; o O: OlO o
1 i ; i 1 ! : i ! ! ill! I CO, CO cO(!T-

■<r Si" b^; h-' ' : M
':'''■''

CO ; vp: vP vgl >PI ^P! vP
Cf'-I Cf*. !?*■ ff*"

>J > ; oi oi O! o: o; o

•a

;co'i-.i-i

CO s:tn
"-?■:-?■■ 'T ,--?-'-r'-7*''~?-

CO SS s? 5?, 5? j? 5? ' >* > O; m: O! m, o o
c
3
o

1-: CM CM TJ-

C\J to «■
">• ■>• ~y , -?■ T:-y;

CO xP sO s? sj sP-^

l» 1 :* co co' co; o. o o
O) CO, CO CO

o
(0

1- to: co
:-y -?•. -y-y-?• :-y ■~f !"?-.

o
c

^p «^ ^O' >fl >^ ^p
O^ ^^ ^^ o' o^ ^^ ' >. 1~ o o m O! w o m lO; CJ 1- I-1

o £ w ~y ">■ ">" ~y ~?" ~y "?•■
CO sP' '«P vf> ,^P vp: \J T" ! O LO; m! O, O1 O

</> : CM; h-;

Q o> co CD -y:-y: i -y-y'-y, i>'>: :~?-: CO , *HP ^O **P ■ vP ■ ^P i *P
: o^ £?*■ 5s er~ c?* o** >» > : ©: O O O O O

(0
3
(0

CM, CM CO CO,

CO CO o :-?■'-?• T T ~y~y ~y!-y:~y
CO i ^P **P ' ^'HP : **P ' vP ' ^P

o*" cr* o^ <?* o^ 0s

>v T" o r- r- r- Ot o >
(0

CM CM CM CM

r^ co o ■■-?■-?■, -?■'■ CO •sP -sp' vp i »sp : -vp I vp

£ >» > , o o. o o o o
+* CO ■ ^t: CO

g CO CO «-
'-y T' ;~y ■"> :">'"?■

CO ^P : vP ^P ' '■P ' **P "^P
0s" O^ O^" O*^ £?* O*"

w >. > Iß O! O CM O CO ** : Xf , T-, ■«■

c
0)

■D

■ ■ i i '

in CO co -y :-y'-y ">'-?■!
CO

Cv" o^ iv-. ly,■ tf* o^
O. O O O Ol o

c
o
Q.

, ir> CM. CM : i-:

T CO co
:-?■-?■: ,_y ' ■ '"?■;-?!

CO ; ^p' vP -»P. *P : ^P! »P

(0 >* i > O: O Oi Oi Ol O

<D :°' i i i ! cc It
CO co' in

CD] • i-?-1 j-?-; '"yiT! ' !-?-: ;-?- T
CO
CD >

1 vP ' «*P 1 03 ! 00 ! mJ5 1 vO
1 e> > c> • c>r c> | <>: eT"
lOi lO| 0: lOi lO O

; i ! . , ; i : j !-^!CO!CO' |^
i ■

CM coj to ■>i ! '< '■ M ; ' i-^l-yl-yl CO i vpl >p[-»P' -»p1 isPJ vp

>i *- > i co! LO< in o; col co
I ;

i i I 1 !
cM;-r--Tt; i 1

. i_ i.. 1 .J J ...
T- Cpl CO -p. \ "V •>• i j ">i -> *> CO ! -sPl %pi NP

«^•i 5^1 5s

>>■'" i > in in o io| in o ! ! OJ 1 -r- in

o« t>! o* o> o <*- C^- c^- CO (0 i CD k.

CD > c
o

CD! >»

= 1 ?
CO u

X

"5 m

Q ffl >
o
CO
a

ffl > CD CD
O) CB! £Z

Z'.-a
0) 1 CD

c

c
o

■D

c
Dl
co

CD

CO

S c
o
(0

CO to

o
J3

a
N

s
a
CO

1
c

o

"S o
o
CD

6
Q

3
ja

5

•a •a

E

CO

O)
o
o

E

3

O

o
a »
o

DC
CD
U
c
CD

•o
o
CO
a>
Ol

a
w
3

r:
u
<5

o
u
'S

CO

o
"5 >
u
CD
a

a>
CO
CO
CD

a

c
o

w

CO

O
c
0) •a

o a. >»
X

5
to
3
CO >

O
X

-1

CO

c

CD
x:
o
o

CO
■a
c
CO

3 o to
u
a
£

c
o

<o
CD

■D

CD
a.

0
to o

a
CO

o o S| "O CO

to to
a>

X
CD

>.
CO

0) ■u a i2! CO

£
CD

c
O a

3
(0

»
CD
CD

CO
o
c 5

o
l-

o
E
© > > 3 ui

n A Si 1
^ 1 CM CO CO ^-; u> CO

00

o a

c
.SP

CJ
■o

"3
3
C/3

">
C3

JZ

c
00

OJ
-o

a
ts
-a
>.
cj >
Urn

3
CO

<

150

CO! CO i5?;s?i 'as.ss:gsigsiaS'as 1 vpi vp: vP vP
! P-I PN 0s" 0s" ?£ i ON c>

^O! ^0| vO
p-

8« ; 10 WlCM; CM, CM! CO CO CO, O \ OV CO! CO en ^ 0 ! O CM in CM! CV CO
II: CO! CD' CDj CD! CM CM' i ' CD: CJ! CM CO in 0 : co| 1- T— r- T— r-

o —•! 11 ; 1 : ^ ! I

©

CD

c
O! I ! : i ! i i i

j : i : ; j
' i i ■ i

j 1 | i
1 : ! : 1 1 > i i : ■ ! : i <
i ;:;!!! ! ! ; 1

1
j |

CO ci°° f>' . ' :
:-?-;-?-!->-!-?-j « : ^p! i*i>pl s^j O sP

. 1 ' ' > i IDI O' Ol IT Oi 0
I : : i ! j ; ! i : ! ! i ! CO CM! CM 1- V-!

o 0 0
C T- ■*■■-?•■ i-?- \~f'-T H ; !-yhy CO

1 ^-1 ^*! &>»l a** -v>! v?

. \ ! ! ' ' ' i j lOi 101 to 0 101 0

■c

i"i !wr: i
CD 0| CM T-!-y: ~rr. ;-y! <->'. i ■-?-!-?•

to 1 ■»«; vp! *jp' »^! vp: ■sP

1 > ! IO: 0! Ol Ol W! O c
3 o

| , CD' -r-| *-; i-i

CO ° CO -y; -y'-y -?■ <-y~"y -5- "y
to 1 v^' «>p^: ^- -^; ^5, -^

0: O1 O O1 O: O

u
(0

; CO CO ■*- CO

r*- O if) ->■ -y '-y
CO ■^ vp. vP: N? sj' ^

: O CM tO t-i CM! O m CO ; T-

c <D O CO -y:"y .->■-> "7- ~y "T
to ' ^S ^S *^S "*S *-2' ^S 0^ 0^ cr- 0^ 0^' iv"

0: to 0 to O. O

(0 in: r- co

Q "7-
lO O CO -y -7* ~r ~r

to ' ^S ^S' ^5i *^i ^r *^2
0 in: in 0 0 0

(0

: a>

rr O CM -y ~?-:-^
to ■ vp vP xP vP' sP vP

0^ 0^ 0s" er" ef*' 0s

: in 0 tn: mi 0 to >
(0

CM CM' CM 0J

CO 0 in
-y-y' -y-y '"> to : 5? s^ 52:52; s5; 5s

4M

3
c h» > ■ O' 0 in in 0: 0

CO ■<-

O CM 0 * -y -y "y -y ~y 'T
to vP vP1 vp ' vp vP vP

> O O. O! Ol O O
i to110

: ' i ;

"•- or. -y "y -y i-y -y —r-~r
CO

O1^ O^ O^". O^ ■ O^ 0s"
O; O O' O O O

c
a>

■o
c
o
Q.
tn

o
CM

-?■

: ! 1
CM CM CMl CM CM:

: 1 1 I !

0: m ■~?- *>'
to : vP vp vPj -»P , vP ■ vp

10 in 0 0 0 0
CO CO: CO

O) Olv -y ~y ~y "■*■' '~y-~y!
to vp vP ' vP ' ^P ' -^ vP , ^^ 0*" tf-' &^' o^1 O^* 1

O OO' O O O

: j ! i !
; CM| ; CM. 1 CD

p. 1 p- ^^^>^^ i p- ■ p- c*- : p-] (*• 1 (0 « 1 (0 ' W 1 CO 1 *r
•c ' ® >r; a>; c ©: >* «
0 : m : 3 >i O: =i «0: 5

lie: S[2: S; 21 dS ":o; 0. |; £ -;« :«:siS':°^
&; 0; »o —

; <D
', at D) J= » a» ■ —

c
a>

c
0»
tn

'.-a

E,°'!«^ll

■ O 1 ' "~; 0> *;: C> to liiiU'o
a.
to
a

CC t is O

«

(0
3

£ ■
0;

a>j

A! :=■ . '1 =
5; Si i » » •D

X
3 :
»i 1
>j !

c*-

-1

CO

c

.. I'D
u =
CD i *°

oj

M

Ü

CO i 0

c
o »:S.

■0 !g

CO
O oJ : 0

0 (0
3

1 ■o
;

(0
o >.

10 |
o\ ■0 ca to (0

O to : (0

111
CO
a
c

>
x:
5 i e 1

i
0>

E

> !>■ 3 UJ

■ - m ■0 ! ! JO
r- iCM « 1 «1:1 •4- i 1 ID to

s
3
O
Ui
60

O
t3

XI
c op

'«
to -o
'S
3

>
a
3 o

0
5b
0)

T3

a
-a

>
3

00

1

<

£2

A.2. SUMMARY OF DATA 151

All Respondents

Question Overall Averaqe or % Visual Average or % i Non-Visual Average or %
1. Visual designer? 58%! count = 18: count =13
2. Years experience 5.8! 6.1 i 5.3
3a. In early stages of design, t ;

sketch? 94% 100%; 85%
use software? 58% 56%' 62%

3b. Why sketch? I ;
faster? 55% I 50% i 62%

portable/collaborative? 45% i 33%l 62%
perspective/organization? 32% 39%' 23%

easier/versatile? 29% 33% 23%
details don't get in way? 16%; 22% 8%
allows non-standard Uls? 6%i 11% 0%

4. Ul Tools Used: !
HyperCard (HC)? 48%; 33% 69%

Director (D)? 45%! 61%
33%

23%
Visual Basic (VB)? 29% 23%

HC, D, or VB? 77% 83% 69%
Ul builder? 48%: 44%i 54%

5b. Interested in SILK? 90%: 83% 100%
6. Elements Sketched: :

Standard widgets 28% 26% 30%
Custom widgets '17% 20%' 12%
Static graphics 21%; 25%; 15%

Interactive objects 7% 4% 12%
Multimedia 10%' 9% 12%

Other 17%: 16%: 18%

Table A-3. Mean values for survey question results.

The following items were listed for the "Other" category in question 6: window
layout, interactions spanning multiple widgets, physical product user interfaces, splash
screen art, static dialogs, animated icons, text layout, and Ul structures / architectures.

152

APPENDIX B

Evaluation Materials

The following sections contain all the forms that were given to the participants before,
during, and after the SELK usability test. See Chapter 6, "Evaluation", for a description
of the experiment itself.

B.l Consent Forms
This section contains the consent forms given to the designers (Section B.l.l) and
engineers (Section B.l.2).

B.l.l Designer Consent Form

Carnegie Mellon University
Consent Form

Project Title: SILK
Conducted By: James A. Landay, Computer Science Department

I agree to participate in the observational research conducted by students or staff under
the supervision of Dr. Brad Myers. I understand that the proposed research has been re-
viewed by the University's Institutional Review Board and that to the best of their abil-
ity they have determined that the observations involve no invasion of my rights of
privacy, nor do they incorporate any procedure or requirements which may be found
morally or ethically objectionable. I understand that my participation is voluntary and
that if at any time I wish to terminate my participation in this study I have the right to
do so without penalty. I understand that I will be paid $25 for my participation when I
have completed the experiment.

153

154

If you have any questions about this study, you should feel free to ask them now or any-
time throughout the study by contacting:

Dr. Brad Myers
HCI Institute, School of Computer Science
412-268-5150
bam@cs.cmu.edu

You may report any objections to the study, either orally or in writing to:

Susan Burkett
Associate Provost
Carnegie Mellon University
412-268-8746

Purpose of the Study: I understand that I will be using some interface design tools. I
know that the researchers are studying how people perform user interface design. I re-
alize that in the experiment I will create some user interface designs over 2-4 hours. I
am aware that I will be videotaped during the experiment so that the researchers can
examine how the interface design tools supported the task.

I understand that the following procedure will be used to maintain my anonymity in
analysis and publication/presentation of any results. Each participant will be assigned
a number. The researchers will save the data and videotape files by participant number,
not by name. Only members of the research group will view the tapes in detail. No other
researchers will have access to these tapes.

I understand that in signing this consent form, I give Dr. Brad Myers, and his associates
permission to present the results of this work in written/oral form, without further per-
mission from me.

Name (please print) Signature

Telephone Date Subject #

Optional Permission: I understand that the researchers may want to use a short portion
of videotape for illustrative reasons in presentations of this work. I give my permission
to do so provided that my name will not appear.

 YES NO (Please initial here)

B.l. CONSENT FORMS 155

B.1.2 Engineer Consent Form

Carnegie Mellon University
Consent Form

Project Title: SILK
Conducted By: James A. Landay, Computer Science Department

I agree to participate in the observational research conducted by students or staff under
the supervision of Dr. Brad Myers. I understand that the proposed research has been re-
viewed by the University's Institutional Review Board and that to the best of their abil-
ity they have determined that the observations involve no invasion of my rights of
privacy, nor do they incorporate any procedure or requirements which may be found
morally or ethically objectionable. I understand that my participation is voluntary and
that if at any time I wish to terminate my participation in this study I have the right to
do so without penalty. I understand that I will be paid $8 for my participation when I
have completed the experiment.

If you have any questions about this study, you should feel free to ask them now or any-
time throughout the study by contacting:

Dr. Brad Myers
HCI Institute, School of Computer Science
412-268-5150
bam@cs.cmu.edu

You may report any objections to the study, either orally or in writing to:

Susan Burkett
Associate Provost
Carnegie Mellon University
412-268-8746

Purpose of the Study: I understand that I will be using/observing the use of some inter-
face design tools. I know that the researchers are studying how people perform user in-
terface design. I realize that in the experiment I will discuss some user interface designs
over 1-2 hours. I am aware that I will be videotaped during the experiment so that the
researchers can examine how the interface design tools supported the task.

I understand that the following procedure will be used to maintain my anonymity in
analysis and publication/presentation of any results. Each participant will be assigned
a number. The researchers will save the data and videotape files by participant number,
not by name. Only members of the research group will view the tapes in detail. No other
researchers will have access to these tapes.

I understand that in signing this consent form, I give Dr. Brad Myers, and his associates

156

permission to present the results of this work in written/oral form, without further per-
mission from me.

Name (please print) Signature

Telephone Date Subject #

Optional Permission: I understand that the researchers may want to use a short portion
of videotape for illustrative reasons in presentations of this work. I give my permission
to do so provided that my name will not appear.

 YES NO (Please initial here)

B.2. INITIAL INFORMATION READ TO PARTICIPANTS 157

B.2 Initial Information Read to Participants

Initial Information Read to Participants

The basic instructions below are based on a instructions written by Kathleen Gomoll
[Gomoll 1990].

Description of the observation (in general terms):

• You are helping me by trying out a user interface design system.

• I'm testing the system; I'm not testing you.

• I'm looking for places where the system may be difficult to use.

• If you have trouble with some of the tasks, it's the system's fault, not yours. Do not
feel bad; that's exactly what I'm looking for.

• If I can locate trouble spots, then the developers can go back and improve the system.

• Remember, this is totally voluntary. Although I don't know of any reason for this to
happen, if you become uncomfortable or find this objectionable in any way, feel free to
quit at any time.

Demonstration of equipment:

• You will be using this workstation/PC to work on a user interface design. Are you fa-
miliar with how to use this equipment? The mouse? The keyboard?

• Please do not move or resize the windows. They are positioned to be seen by the video
camera.

158

B.3 Designer Demographic Data Sheet

Designer Demographic Questions

Subject No.:

Age:

Sex:
 Male

 Female

Occupation:
 Student (Major:

. Professional Designer

Other (please specify)

How many years experience have you had in doing user interface design in a profes-
sional capacity (i.e., you were paid for it)?

Have you taken a course in user interface design in which you spent a significant
amount of time producing actual interface designs?

If yes, which courses were these?

Which user interface design tools have you used (e.g., HyperCard, Director, Visual BA-
SIC, Antisexist, Toolbook, etc.)?

Which drawing or painting programs have you used? (e.g., MacDraw, Corel Draw,
etc.)?

Which HCI books have you read?

Have you read Usability Engineering by Jakob Nielsen?

B.4. ENGINEER DEMOGRAPHIC DATA SHEET 159

B.4 Engineer Demographic Data Sheet

Engineer Demographic Questions

Subject No.:

Age:

Sex:
 Male

 Female

Occupation:
 Student (Major:)

Other (please specify)

How many years experience have you had programming in a professional capacity (i.e.,
you were paid for it)?

Have you taken a course in user interface design in which you spent a significant
amount of time producing actual interface designs?

If yes, which courses were these?

Which user interface design tools have you used (e.g., HyperCard, Director, Visual BA-
SIC, NeXTStep, Toolbook, etc.)?

Which drawing or painting programs have you used? (e.g., MacDraw, Corel Draw,
etc.)?

Which HCI books have you read?

Have you read Usability Engineering by Jakob Nielsen?

160

B.5 SILK Demonstration Script
Before giving the participants the SILK Tutorial, I read the following information to
them while performing the actions indicated in italics.

SILK Demo Script

Overview

The idea of the system is that the designer sketches a user interface using the mouse and
then leaves it in that sketchy state. The system tries to infer what the different types of
user interface elements are in the sketch and they become active. The designer can then
attach actions to them using story boards.

Basic Primitives

There four are basic primitives that are recognized. For example, rectangles.
draw rectangle and show feedback

You can only draw that with a single stroke (meaning you hold down the left mouse
button throughout the shape.) So you can not draw the rectangle with 4 lines.

It also recognizes circles, lines, and text.
draw circle
draw line
draw squiggly for text

Corrections/Learning

At any point the system may get one of these primitives wrong. For example you may
draw a small circle and the system may have inferred it was a rectangle.

draw a small circle
click on button to correct

The system will learn from these corrections and learn how you draw your shapes.
When the system makes a mistake you should correct it instead of deleting it and start-
ing over.

Gestures

The system supports gestures that are drawn with the MIDDLE button held down. For
example, you can draw an X-shape with a single stroke through objects to delete them.

draw a delete gesture to delete some items

Widgets

The system takes the basic primitives we previously drew and combines them together
to get user interface widgets. For example if you draw a small circle with some text to

B.5. SILK DEMONSTRATION SCRIPT 161

the right of it, the system says it is a radio button.
draw a radio button

Another alternative inference for that is a check-box since a check-box is defined as a
square with some text next to it. Since these two widgets are similar, the system reports
both inferences.

draw a check-box
click on the radio button and click new guess

If you meant check box, we can click on new guess and we will get check-box. You can
see it also gives the other alternative inferences: radio button or multiple selected ob-
jects. You can change the inference by selecting on one of those alternatives.

Selection
You can move or resize any of the selected objects by dragging on the handles. The
white handles are for moving and the black handles are for resizing.

demonstrate moving and resizing

You can select multiple objects at once by clicking on the object and then while holding
down the shift key clicking on a second (or more) object.

demonstrate multiple selections
Sometimes you can use these selections to give SILK a hint as to what primitives it
should group together in a new widget.

draw radio button with text too far from label
multi-select
new-guess button

If you don't wish to give SILK that hint, you might just move the items closer together.
draw radio button with text too far from label
move label closer
new-guess button (with only one item selected)

Decorations

Sometimes it is important to draw static graphics that you do not want to be recognized
as a UI widget. You can do this by switching to decorate mode.

switch to decorate mode and draw some things
All editing (e.g., to delete it) of these graphics needs to occur in decorate mode, but oth-
erwise you can use them anywhere.

Storyboarding

What you can then do is attach actions to the widgets. For example, we can have a win-
dow with some buttons below it.

draw a window
draw 2 buttons below it

162

Now you can copy these screens to the storyboard window by selecting "Copy Screen
to Storyboard".

copy screen to storyboard

Now we can change the original.
draw a 1 in the window
copy screen to the storyboard
use backspace to delete the 1 and draw a 2
copy screen to the storyboard

We now have these screens and we would like to tell the system what actions cause
screen transitions. So we draw arrows between objects and screens.

draw an arrow from 1st button to screen 1
draw an arrow from 2nd button to screen 2
draw arrows from all other buttons back to 1st screen

We then select the first screen and copy it back to the sketch window. We now switch
to run mode.

copy 1st screen to sketch
switch to run mode
demonstrate running storyboards

B.6. PRACTICE DESIGN TASK 163

B.6 Practice Design Task

The following practice task was given to the design participants on a paper sheet along
with the SILK Tutorial and Reference (see Appendix D).

Designer Practice Task

Design an interface that would allow potential home buyers to view houses on the mar-
ket through their home computer. The service should allow the user to specify various
search criteria such as price and location, after which the system would show a series
of photos for each of the available houses and allow the customer to set up an appoint-
ment to see a house for real.

You can assume that the computer has some type of network connection and your in-
terface does not need to deal with making the connection with the remote home market
data.

This document will lead you through building two radically different, but high quality
versions of this interface. You should follow the steps in the document and try to build
the two interfaces in order to become familiar with the tools for the next design task. *&*

Sometimes the system will make a mistake. That is, the system did not do what you ex-
pected it to. Please inform us when this happens so that we can take note of it.

164

B.7 Measured Design Task
The following task was given to the design participants on a paper sheet. They were
permitted to keep their copy of the SILK Tutorial and Reference (see Appendix D).

Designer Task 1

Design multiple interfaces for a system to provide weather information to travelers.
TRAVELweather can provide information about the weather for the current day and can
give predictions for the next two days. The interface is to be used on a window-based
graphical personal computer with a mouse.

The user should be able to enter the date and time they wish a forecast for. The system
should display a map of the region in question with the weather data overlaid on the
map. The types of data that the system should be able to display are temperature (in ei-
ther Fahrenheit or Celsius), precipitation, and wind speed/direction.

You should try to come up with as many radically different design ideas as you can.
Your goal for this task is to explore the possible design space and eventually present
several good alternatives to the rest of your design team or a client. You should save or
label the different designs that you come up with so that we can keep them separate
from each other. Remember, the designer who produces the best interface (as chosen
by our panel of judges) will win $100.

Sometimes the system will make a mistake. That is, the system did not do what you ex-
pected it to. Please inform us when this happens so that we can take note of it.

B.8. ENGINEERING TASK DESCRIPTION 165

B.8 Engineering Task Description

The following task description was given to the engineering participants on a paper
sheet.

Engineer Task

You will be shown some preliminary designs for a user interface to a weather informa-
tion system. The person showing you the designs is a user interface designer and has
just spent the last few hours working on these early designs. You are to pretend that you
are a member of the engineering team that will build the ensuing product. Try to give
the designer feedback on the designs as you might in a real work situation. You should
be concerned with the appropriateness of the user interface design (i.e., how well it will
work for the users), not with how hard it will be to implement.

The description of the problem given to the designer is as follows:
Design multiple interfaces for a system to provide weather information to trav-
elers. TRAVELweather can provide information about the weather for the cur-
rent day and can give predictions for the next two days. The interface is to be
used on a window-based graphical personal computer with a mouse.

The user should be able to enter the date and time they wish a forecast for. The
system should display a map of the region in question with the weather data
overlaid on the map. The types of data that the system should be able to display
are temperature (in either Fahrenheit or Celsius), precipitation, and wind speed/
direction.

B.9 Engineering Design Review Script
The following description of the design review was read by me to both the engineer
and designer at the start of the engineering design review.

Design Review Script

[Designer name] is going to show you what he/she has done and try to run you through
it. [Engineer name] is acting as an engineer that you as a designer are trying to
show the design idea to. He/she knows what the design problem is from reading the
problem statement. He/she might have feedback on what you did and you are
free to try these changes. You are trying to show what you have done and walk
him/her through your ideas. When you feel that you have fully gone over
it, tell me that you are ready to end.

166

B.10 Designer Post-Evaluation Questionnaire
Answers to the following questions are given in Appendix Section C.5.

Designer Post-Evaluation Questionnaire

Subject number:

1. Assuming that the SILK system was significantly faster and less buggy than the pro-
totype, do you think it would be a better tool for interface design than existing tools (i.e.,
paper and prototyping tools such as HyperCard, Director, and Visual BASIC)?

Why or why not?

Usability Problems

Did you experience problems with any of the following:

2. Understanding how to carry out the tasks (check one):

 no problems minor problems major problems

Please explain:

3. Knowing what to do next to complete your task (check one):

 no problems minor problems major problems

Please explain:

4. How well did the gesture recognition work?

5. What are the best aspects of SILK for the user?

6. What are the worst aspects of SELK for the user?

7. What were the most common mistakes the system made?

8. How was the overall performance of the system? (circle one)

B. 10. DESIGNER POST-EVALUA TION Q UESTIONNAIRE 167

very poor 0123456789 10 very good

9. What does a system like SILK offer you that Director or HyperCard does not?

Please write any other recommendations and comments you might have on SILK here
and on the back:

168

B.ll Engineer Post-Evaluation Questionnaire

Engineer Post-Evaluation Questionnaire

Subject number:

1. Assuming that the SILK system was significantly faster and less buggy than the pro-
totype, do you think it would be a better tool for interface design than existing tools (i.e.,
paper and prototyping tools such as HyperCard, Director, and Visual BASIC)?

Why or why not?

Usability Problems

Did you notice the designer having problems with any of the following:

2. Understanding how to carry out the tasks (check one):

 no problems minor problems major problems

Please explain:

3. Knowing what to do next to complete their task (check one):

 no problems minor problems major problems

Please explain:

4. What are the best aspects of SILK for the user?

5. What are the worst aspects of SILK for the user?

6. What were the most common mistakes the system made?

Please write any other recommendations and comments you might have on SILK here
and on the back:

B. 12. POST-EXPERIMENT INFORMATION 169

B.12 Post-Experiment Information

The following information was given to each participants on a sheet of paper at the end
of the session.

Post-Experiment Information

Thank you for participating in our experiment. The purpose of the experiment was to
see whether user interface designers can use a new electronic sketching tool, called
SILK, to design user interfaces. In addition, we would like to see if user's can perform
design tasks more quickly with SILK than with existing design tools (such as Hyper-
Card), for both the overall process and for each iteration. We would also like to find out
whether SILK encourages the exploration of a wider variety of design ideas. We would
also like to find out whether designers using SILK produce higher quality user interfac-
es. Finally, we would like to find any problems with the SILK user interface so that we
can refine it.

170

APPENDIX C

Evaluation Data

This appendix contains all of the data collected during the SILK usability test. See
Chapter 6, "Evaluation", for a description of the experiment and an analysis of the
data.

171

172

C.l Designer Demographic Information

Table C-l contains the demographic information that was given by the design partici-
pants prior to the experiment.

Designer Demographics

participant 7 ! 9 11 I 13 i 15 I 17 mean' median % yes

age 21! 29 41! 33! 21! 33 29.7! 31.0:
sex Male: Female! Female! Female! Male! Male ! I 50% male

graduate program? no! yes! yes! yes' no! N/A ! i 60%

major
industrial'

design!

HCI-i
interaction

design!

communication,!
planning, &!

design:

HCI -!
interaction!

design! HCI! design
i
!

years professional Ul
design experience

I

0.25: 1.25! 0! 2! 2.5i 5 1.8 1.6
advanced? no yes no! yes yes yes i ! 67%

taken Ul design project:
courses? yes yes- yes! yes yes no ! 83%

Ul tools used:
HyperCard? no no no no yes yes 33%

Director? ^es
yes
no!

 yes
no
no;

yes yes, yes yes 100%
Visual BASIC? no

no
no: yes no 33%

HTML? no yes! yes 33%
C++ or Java? no: no- no yes! yes no 33%

Drawing/painting
programs used:

no no no Canvas no no yes 17%
Color It!

Corel Draw
no no no no. yes no 17%
no no yes no: no yes 33%

Freehand no no no yes: yes: yes : 50%
Illustrator no yes! yes yes yes yes 83%
MacDraw no no no no yes yes 33%
MacPaint no no. no' no: yes no 17%

Photoshop yes yes
no

yes yes yes yes 100%
Superpaint no no no yes no 17%

at least one? yes yes yes: yes yes yes : 100%
read HCI books? yes yes no yes yes yes '• 83%

Nielsen's Usability
Engineering ? no: yes

j
no' no; no yes 33%

Table C-l. Complete demographic information supplied by design participants.

C.2. ENGINEER DEMOGRAPHIC INFORMATION 173

C.2 Engineer Demographic Information

Table C-2 contains the demographic information that was given by the engineering
participants prior to the experiment.

Engineer Demographics

participant 8 10 12 14 16 18 mean median % ves

age 26 33 25 27 25 25 26.8 25.5
sex Male Female Male Male Male Male 83% male

graduate program? yes yes yes yes yes yes 100%

major CS robotics
language

technology CS CS CS 67% CS

years professional
programming
experience 4 9 0 2 2 7 4.0 3.0

Ul toots used:
HyperCard? yes no no no no no 17%

Director? no no no no no no 0%
Visual BASIC? yes no yes no no no 33%

Tcl/Tk? yes yes no no no no 33%
Other? yes yes no no no no 33%

at least one? yes yes yes no no no 50%
Other:

Builder? yes no no no no no 17%
Lotus Notes? yes no no no no no 17%

X/Motif? yes no no no no no 17%
Xcessory? yes no no no no no 17%

Drawing/painting
programs used:

Canvas no no no no no no 0%
Color It! no no no no no no 0%

Corel Draw no no yes no no yes 33%
Cricket Draw yes no no no no no 17%

Freehand no no no no no no 0%
Illustrator yes no no no no no 17%
MacDraw yes yes no no no yes 50%
MacPaint no yes no no no no 17%

Paintbrush no no no yes no no 17%
Photoshop yes no no no no no 17%

PowerPoint yes no no no no no 17%
Superpaint no no no no no no 0%

Visio yes no no no no no 17%
Xfig no yes no yes yes no 50%

at least one? yes yes ves yes yes ves 100%
read HCI books? yes no no no no no 17%

Nielsen's Usability
Enq'meerinq ? yes no no no no no 17%

Table C-2. Complete demographic information supplied by engineering participants.

174

C.3 Experimental Data

This section includes the data collected during the SILK usability test. Table C-3 con-
tains data on the recognition results and Table C-4 contains data that characterizes the
sessions and the resulting designs (each of which are included in Section C.4).

Recognition Information

1 participant 7 9 ! 11 13 | 15 ! 17 mean median i stdev

tutorial | editing ! #drawn 52^ 40 ! 78 56 81 ! 55 60 56 ! 16

j gestures | #unrecognized 10^ 9 2 10 30 I 5 11 | 10 10

i recognition rate 80.8% I 77.5% 97.4% j 82.1% j 63.0% j 90.9% 82.0% 81.5% ! 11.8%

[primitive ! «drawn 88! 103 174 i 54 83 i 96 100 ! 92 40

j components] «unrecognized 12: 15 55 4 i 10 I 15 19 I 14 I 18

#corrections ii: 21 27 1 i 8 6 12 10 ! 1° 1
recognition rate 87.5% 79.6% i 84.5% : 98.1% i 90.4% ! 93.8% 89.0% '< 88.9% 6.6%

widget #made 49 24 40 15 ! 25 30 31 ! 28 12

inferences «errors 9

81.6%

5

79.2%

22 2 9 1 7 9 8 7

recognition rate 45.0% 86.7% 64.0% 76.7% 72.2% 77.9% 15.3%

repairs: #new guesses 44 9 3 2 1 5 11 4 17

«changes 1 0 5 1 1 5 2 1 2

«broken N/A

5.0

N/A 19 1 8 6 9 7 8

repairs/error 1.8 1.2 2.0 1.1 2.3 2.2 1.9 1.4

«explicit inferences N/A N/A 27 2 14 10 13 12 10

«explicit successes N/A N/A 12 1 9 3 6 6 5

explicit success rate N/A N/A 44% 50% 64% 30% 47% 47% 14%

weather ; editing «drawn 67 139 63 119 151 78 103 99 38

task gestures «unrecognized 3 17 8 8 34

77.5%

7 13 8 1 1

recognition rate 95.5% 87.8% 87.3% 93.3% 91.0% 88.7% 89.4% 6.3%

primitive «drawn 120 102 40 55 123 114 92 108 36

I components «unrecognized 21 20 20 12 13 38 21 20 9

#corrections 9 8

92.2%

3

92.5%

0 15 7 7 7 5

recognition rate 92.5%! 100.0% 87.8% 93.9% 93.1% 92.5% 3.9%

#non-learning errors N/A 33 16 0 48 32 26 32 18

i non-learning recognition
rate N/A : 67.6% 60.0% 100.0% 61.0% 71.9% 72.1% 67.6% 16.3%

widget «made 4ll 17 2 14 56 14 24 16 20

' inferences «errors 10i 1 1 5 26 3 8 4 10

recognition rate 75.6%: 94.1% 50.0% 64.3% 53.6% 78.6% 69.4% 69.9% 16.7%

repairs: «new guesses 8 0 0 0 23 0 5 0 9

«changes o! 0 0 0 13 0 2 0 5

«broken 3| 1 1 5 29 3 7 3 11
repairs/error 1.li 1.0 1.0 1.0 2.5 1.0 1.3 1.0 0.6

| «explicit inferences 111 1 0 4 17 0 6 3 7

i «explicit successes Zi 1 0 1 11 0 3 1 4
i explicit success rate 18%; 100% 25% 65% 52% 45% 38%

Table C-3. Recognition information for editing gestures, primitive components, and widget
inferences for both the tutorial and measured task.

C.3. EXPERIMENTAL DATA 175

Tutorial, Task, Design, and Discussion Characteristics

| participant 7 9 I 1 1 ! 13 I 15 I 17 mean j median j stdev
!
j total time 3:30 3:55 4:15 3:00 4:1014:30 3:53 4:02 0:33

tutorial ! time 0:44 0:42 1:39 0:30 0:45! 1:18 0:56 i 0:44j 0:26

| »crashes 0 0 0J 0! 0; 2 0.3 I 0.0! 0.8

j crash recovery or assistance
| time 0:00 0:00

] j

0:05 0:00 0:00 0:06 0:01

0:54

;
0:00 0:02

adjusted tutorial time 0:44| 0:42 1:34 0:30! 0:45 1:12 0:44 0:23

weather time 2:07j2:08i 1:18! 1:13J 1:47| 1:43 1:42 1:45 0:23
task «crashes 2! 0| 0| 0 3 1 1.0 ! o.s! 1.3

! crash recovery time 0:25! 0:00l 0:00; 0:001 0:10 0:04 0:06

1:36

0:02! 0:09
adjusted task time 1:42! 2:08 1:18i 1:13; 1:37 1:39 1:38! 0:19

iteration 1 time 1:32! 0:47^ 1:18! 0:26: 0:46! 1:19 1:01 I 1:02: 0:25
»screens 5- 7: 2i 4 8! 7 5.5 6.01 2.3

«transitions 10, 18: 0: 8! 30: 13 13.2 11.5! 10.2
iteration 2 time 0:38: 1:211 : 0:48 0:40 0:23 0:46 0:40 0:21

«screens 4 10: 10 6' 2 6.4 6.0 3.6
«transitions 10! 20: ; 22 32 2 17.2 20.0' 11.5

iteration 3 time 10:21 0:21 0:21
«screens 7 7.0 7.0

«transitions 19 19.0 19.0:
«desiqns 2 2 1 2 3 2 2.0

0:51

2.0 0.6

average time / iteration 0:51: 1:04 1:18 0:36 0:32 0:49 0:50: 0:17
total screens 9: 17 2: 14: 21: 9 12.0 11.5 6.8

total transitions 20; 38 0l 30; 81. 15 30.7
5.6

13.1

2.0

25.0, 27.9
screens / design 4.5 8.5 2: 7 7 4.5 5.8 2.4

transitions / design .10 19_

2.2 2.2

0: 15 27 7.5 12.5

2.2

9.4

1.2 transitions / screen 0 2.1 3.9 1.7

total strings 1 18: 220 251 1451 238 157 151 151 77

sketchy strings 56: 69 8: 0 45: 73 42

29%

51 31
% sketchy strings 47% 31%: 32% 0%• 19%! 46% 32% 18%

discussion time 0:31; 0:13: 0:23: 0:161 0:28; 0:29 0:23
67%

0:25l 0:07
: engineer asked critical questions? yes: yes no N/A yes yes
I asked questions on structure &
! behavior? yes yes! yes; N/Ai ves: ves

; !
83%;

: made real-time chanqes? yesi no; nol no yes; yes 50%: j
storyboard used to test? yes! yesl noi ves! ves! ves 83% I !
storyboard used to illustrate
structure?

i ;
yes! no! yes N/A no yes 50% I

i i I

successful communication? ves 1 ves 1 no N/A ves ves 67% I

Table C-4. Tutorial, task, and discussion times along with characteristics of designs produced

176

C.4 Designs Produced
This section contains the storyboards and representative screens of each of the designs
produced during the SILK usability test.

.— i;5ILKS10fyb<wrd^

Mit S)»teh

TRAVELweather
Go back)

Changing Your Location:

-c
Zoom To: TPA, USA I

"1

_;■:—-?•"--—~p

Ä^-r*""-
'Ni:'W:!,.

trr ", 1 > \

Figure C-l. First design of participant 7.

CA. DESIGNS PRODUCED 177

SILK Storytwd üJU
:xdie Skttch

TRAVELweather 5Day Forcast

Settings ^ ^Daily weather | i^ QUIT !£j C^QUI

Figure C-2. Second design of participant 7.

178

.:-: SILK Storyboird f

Mit; ■ «torch/;

TRAVELw*aCh«rS*pcaobar «h 1»!

Currant Conditions:

S32SS
!-!j:

TRAVELweather cs back 1
Daily weather

Today's Weather /WA^_n

f ^ghow forcast J\ Tomorrow >

Figure C-3. Third design of participant 7. This design, a modification of participant 7's first
design, was made during the engineering discussion.

CA. DESIGNS PRODUCED 179

File.

TRAVELweather

^j Sept 17

\J Sept 18 Forecast

V-JSept 19 Forecast

New Date

Monday, September 17

West Pennsylvania

hAJ- .VSiV

_rwv
50 F/10 C

x».

Precipitation 80%
Wind 20mph,SW

^m^w^m^mu

Figure C-4. First design of participant 9.

180

TRAVELweather Monday, September 17 12:00
Pittsburgh, PA

\9/17 |9/18 9/19
temp 1 ,M/I_ ; r<u" l/_~-

precip]AAn-
wind \~\r~

/V"*»- ywv P93L__
V

-* j I
50 F/10 C / I

New date 1
s^^^^^y^s,räi^^X'^'^f^^^

Figure C-5. Second design of participant 9.

C.4. DESIGNS PRODUCED 181

 ■_

SILK Storyboard ""• 1 ;]JJ
Edit Sketch;

■: Xin Line

iweather information

Today's date ifSeptember 20, 1996

Information abouj^i,
ienter date

The Forecast for:

SeptemBi-r,20, 1996

Temperature 3 8 r
167 i

Precipitation 2#4 chance of rain

Viink 'Is mph

| |NE

•_!' • ■■—-■- - SILK Sketch
._.__ rvpi

The Forecast for:

September 20, 1996

Temperature: 3 8 ._..- ---**#*"*

1;

""'""•'■-, Precipitation

Wind

2 0% chance of rain

25 mph a*-****

1
\ ,>'^" -\-

(NE
a'w^

1
I

■£• back
i ■^/"^WW^ I

1
8 —
1

 ■

«mü^ilüi^mii"'5"' ^ ^

Figure C-6. Sole design of participant 11.

182

jiSILKStotyboaray

Mit Slwtdi

-VV"

TRAVELWaathar ftaault^ '

Hilton Hand, SC ';

TflAVELWaathar ftaiule'i" TOAVELMaathar Ra»ult-S'

Hilton Haad. SC ;

I TRAVELWeather Results

Hilton Head, SC

+12 hours

Hilcon Head,: SC

:• Time: 03 -.25

Temp: 7OF

\ Forecast: P;Cldy;

\ Wind: fimi N/NW ■..

L~-.,^.J^^"^"-/yK^~"^"' r"':"v",^v..w

J: 'return
i\ new search

' r J

Figure C-7. First design of participant 13.

C.4. DESIGNS PRODUCED 183

- aslLKStoiyboirt^
liHSEgSs

salt ak*teu

f ---■——-
...rtu„mv.i...«.,...

Fl»a* 3»:.ct *r. .r.. ic ;ODH In en.

M.D.jJihis U »;it>r*vl«^! iti» worlä v'-.t u-\r loams 1
(} .-S; .„ ^

■f--'—3

^....„A --/ 4 / J,J^ ^ i< /'
•■'... \ <"*S Vi V, ! c\ "Vx

"•V^ ••-'" 13 <„/■

Results of Search
Hilton Head, SC ;

Current Conditions

3:25 pm Monday ;N

Q .Current

~T.iHie:13.25
Temp: 73F

Forecast: Clr

Wind: 3mi N

I+1JT-1 tM^-H iReturn t
 '■■ " Li i .'";'."■■" "."."— ,~.'..~",, " ,—'_...".:-—

Figure C-8. Second design of participant 13. This was judged to be the best design produced.

184

Date: 1
Time:

o Temperature
r^ ... \\-rJ Precipitation

V Wind

«Return to Main Screen

Figure C-9. First design of participant 15.

CA. DESIGNS PRODUCED 185

äste
{ SILK Sketch <i fly.!:."

Date & Time
10/9 3pm 10/10 3pm

Q Temperature (£)Farenheit Qcelcius

r^i Precipitatic

o
Lon

Wind

Click to zoom in KA—*

^jWV

3
10/11/ 3pm

-^

Figure C-10. Second design of participant 15.

186

■>•.

Weather for bazton, Oct 19, 5:00 PM

[) Temperature

f) Precipitation

Wind

(^) barsvilie

(~) bazton

r~)fooville

Return to main screen

Figure C-ll. Third design of participant 15.

CA. DESIGNS PRODUCED 187

m '■il-8 IQtttna« 12:1 S:HV-

Figure C-12. Fourth design of participant 15. This design, a modification of participant 15's first
design, was made during the engineering discussion. The only difference is that the state of Texas
in the first screen (upper left) can be selected by clicking anywhere in the state rather than on a

button contained in the state.

188

^SlUCStoryboird^

isdit skateh

TRAVEL Waaehat

TRAVEL Waathar i. I
va*eh«r information
and wind ipaad and dirt

Specify data, ti>* and t

Entar Data |

Salact * ragior

TRAVEL Kuthir (or Lak« Krie

(jTod»y Tu.«d«y W*dna*d«y

Pr«cip. •*•***- I'm*' MMtM

«„a s„. «"*"*- "W ««***«•
Wind Dir. *****- W****~ H*tMU*-

TRAVEL w«»th«r (or

Todiiy Tu.=d«y W.dnrsd.y

SILK Sketch

TRAVEL Weather for Pittsburgh Date

Temp.

Precip.

Wind Sp.

Wind Dir

Today Tuesday Wednesday

fWV ((Wo/

o

Time

Return

Figure C-13. First design of participant 17.

C.4. DESIGNS PRODUCED 189

.--:
J SILK Storyboard

Edit Sketch

TRAVEL Weather Pittsburgh

Select an area of Pennsylvania for which you would
like weather information.

Enter Date

I 1
Enter Time

) 1

. ■ _■

I
i SILK Sketch ?

TRAVEL Weather Pittsburgh

Select an area of Pennsylvania for which you would
like weather information.

Enter Date

L
Enter Time

■ '■■

'

Lake Erie

P| Pittsburgh

0
1

Scranton

Figure C-14. Second design of participant 17.

190

_l.
— - - SILK Sketch "' -- • I.-IJI

1

TRAVEL Weather Pittsburgh Quay 1

QjDay 2

"OMorning §

"O-E. Afternoon |

1 0 Temp. F

Temp. C

Quay 3 vJLV. Afternoon 1

\J Evening f

o
0

Precip.

Wind

) l

/

:■;.

(Return o CT1 Pittsburgh

■Si

Figure C-15. Third design of participant 17. This design, a modification of participant 17's
second design, was made during the engineering discussion. The designer added two panels of

buttons in the upper right corner.

C.5. POST-EVALUATION QUESTIONNAIRE RESULTS 191

C.5 Post-Evaluation Questionnaire Results

This section contains all of the participant's responses to the questionnaire adminis-
tered after the usability test (see Chapter 6, "Evaluation"). For fixed response ques-
tions, the number of users who selected a particular response are reported. In addition,
the mean and median are also reported for numerical questions. For discussion ques-
tions, all of the answers are shown. All answers are proceeded by the participant's
identification number.

Designer Post-Evaluation Questionnaire

1. Assuming that the SILK system was significantly faster and less buggy than the pro-
totype, do you think it would be a better tool for interface design than existing tools (i.e.,
paper and prototyping tools such as HyperCard, Director, and Visual BASIC)?

» (7) "It could be an excellent 1st draft tool."

» (9) "Better than Director - the linking with drawings rather than
Lingo is excellent. Also, you can see right away what is going on."

» (11) "No."

» (13) "No, but it would be good for novice interface designers."

» (15) "Yes and no."

» (17) "May be useful for quickly structuring information."

Why or why not?

» (7) "It is as quick as paper sketching and provides a basis for
interaction."

» (9) "I still would have liked using pencil and paper for fiddling
with the problem - it was still faster by hand. But I could learn
using the tool - I made some frames, and saw missing pieces as I was
working, which is the same way it works using paper. That's good!"

» (11) "It takes too much time and it's very frustrating."

» (13) "Unable to implement rollovers, visual/perceptual cues, tran-
sitions from one screen to another."

» (15) "The ability to prototype screen-based interactions is GREAT!
However, it seems difficult to do anything non-standard (e.g., radio
buttons that change the screen)."

» (17) "But restricts typical visual design decisions frequently
combined with prototyping (like type and color)."

192

Usability Problems

Did you experience problems with any of the following:

2. Understanding how to carry out the tasks (check one):

{7.9. 13} ->3 no problems {11. 15. 17} -> 3 minor problems 0 major problems

Please explain:

» (7) no comments

» (9) "For basic tasks, the tutorial was good enough to understand.
I did have some questions as I went along about features - and got
stuck a few times which may have been bug related - e.g., link from
button didn't work when text was too big."

» (11) "It was just a matter of readjusting my thinking - learning
something new."

» (13) no comments

» (15) "I didn't realize that uninterpreted regions could be links
between screens."

» (17) "Relationship of copy and paste on control window ambiguous.
Instruction seems too long (text) and also prevents recovery from
error problems."

3. Knowing what to do next to complete your task (check one):

(9. 13) -> 2 no problems {7. 11. 15. 171-> 4 minor problems 0 major problems

Please explain:

» (7) "The UI of the tool itself."

» (9) "The tasks were fairly simple. The only problem might be re-
arranging - I wasn't sure how to do this without being able to drag."

» (11) "Same as above."

» (13) "Tools are few and simple - it's easy to remember all possible
combinations of things."

» (15) "Linking in scrollbars to make them do something."

» (17) "Annotate mode. And widget choices were not well known enough
for me to rely on them."

C.5. POST-EVALUATION QUESTIONNAIRE RESULTS 193

4. How well did the gesture recognition work?

» (7) "Well except that direction was too important."

» (9) "X's could be better. Caret worked very well."

» (11) "Just OK."

» (13) "Works well - and I am left handed. Preferred using backspace
for delete, however."

» (15) "Pretty well. It's annoying that it quits if you go off the
screen. Using the mouse with my left hand was probably responsible
for a lot of problems."

» (17) "I decided not to use it."

5. What are the best aspects of SILK for the user?

» (7) "Ability of SILK to understand widget types."

» (9) "The storyboard was nice - being able to draw arrows to in-
dicate links was very fast. I liked the way it learned gestures, and
the way it remains sketchy. I liked the ease with which you could
test the interaction - it's a very tight loop. Also, the storyboard-
ing/sketching cycles were much better than with Director. It would
be even better with drag & drop."

» (11) "The idea of frame to frame."

» (13) "Works like pencil and paper; is simple, shows logic of nav-
igation."

» (15) "The ability to see and edit the storyboard is great. It'd
be nice if I could automatically straighten arrows."

» (17) "View of information the users need can be explored quickly!"

6. What are the worst aspects of SILK for the user?

» (7) "It won't understand non-standard widgets."

» (9) "I got a little confused with mouse buttons and not being able
to drag an object except by its handles. This might get better with
time."

» (11) "(1) Speed. (2) Lack of choices. (3) No actual shapes - spent
a lot of time trying to get the program to recognize commands. (4)
lack of manual control. (5) odd type input. (6) odd shapes."

» (13) "Display is pixelated, hard to layer drawing objects, and

194

type abilities are primitive. I would implement size, bold, ital-
ics . "

» (15) "Fiddling with the recognizer. Towards the end, I just wanted
to grab widgets from a palette. Clicking on the wrong mouse button
when gesturing is annoying."

» (17) "Visual restrictions in design phase make it difficult to
integrate static choices with specification."

7. What were the most common mistakes the system made?

» (7) "Drawing objects without figuring out what they are (buttons,
text, etc.) . "

» (9) "Not recognizing X's. Sometimes, such as with scrollbar, it
didn't come up with any recommended widget and I couldn't force it
to be any of them."

» (11) "Recognizing some shapes."

» (13) "I think some of the storyboard got lost when I deleted a
screen."

» (15) "Every time I tried to do an ungroup gesture, it interpreted
it as delete. Lots of my text scribbles were interpreted as lines."

» (17) "Primitive recognition."

8. How was the overall performance of the system? (circle one)

very poor 01 2 3 4 5678 9 10 very good

» (7) "6.5", (9) "7", (11) "3", (13) "8", (15) "7", (17) "6.5'

mean = 6.3
median = 6.8
stdev = 1.7

C.5. POST-EVALUATION QUESTIONNAIRE RESULTS 195

9. What does a system like SILK offer you that Director or HyperCard does not?

» (7) "Rough drafting and simple storyboard interaction."

(9) "I liked being able to draw the connections. It was much faster
than using Lingo in Director. I'm not a HyperCard user. However, I'm
not sure I would use Director for that level of sketching. . . I would
more likely use paper, and then Director would be used for a more
visually rich/accurate interactive prototype. But that sort of func-
tionality would be nice for Director even in those instances."

» (11) "The idea of working from frame to frame."

» (13) "To me, it's like pencil and paper plus navigation logic, so
it offers simplicity. "

» (15) "Storyboarding interface is really nice. I'd like to see it
better integrated with sketching."

» (17) "A storyboard view that is not only sequential (like movies) .
Ability to be fast and sloppy."

Please write any other recommendations and comments you might have on SILK here
and on the back:

» (7) "The widget detection and sketching allows for fast low level
interaction. This tool is great for giving the idea of a progression
through a program w/o getting into the details of the visual design.
Often with tools like Director the high level of visual detail mis-
leads people to thinking more about the visual refinement rather
than the interaction.

The UI and interaction of the tool (SILK) itself needs some work.
The tool is difficult to use at times and its functionality is not
apparent much of the time."

» (9) "Sometimes the links got messy (too many) and were hard to
follow, but I don't know how to fix that.

Being able to copy from the storyboard would be great; also drag &
drop between sketch and storyboard and within the storyboard.

Pen input would also be easier for me to draw shapes with (nothing
to do with the program, I guess).

I sometimes wanted different colors in 'decorate' mode - also dif-
ferent sizes of text. It was hard to get things looking proportional
- such as how big the map is compared to buttons and text, etc.

I would have liked an easier way to share objects - sometimes I
wanted to change all titles, but didn't want to change each frame
separately. Being able to copy directly from storyboard would help

196

a little. However, I wouldn't want to complicate the interface by-
having object names and attributes, etc. So, I'm not sure about this
comment.

SILK seems most useful as something in between paper sketching/ideas
and fuller-functioned prototypes, but I am not sure exactly how it
would fit into the design process without trying it in that scenar-
io."

» (11) "I don't .think this works well as a design tool - what does
it offer that is better than what is out there already? Why not draw
actual boxes - instead of having to spend time drawing shapes that
are not easily/quickly recognized by the computer?"

» (13) "Implement size change for type plus bold and italic.
Allow irregular shapes to be made into buttons.
Allow for movable sprites/buttons (I know this is not easy!)
Allow storyboards to be ported to/edited in Director/HyperCard."

» (15) "When you're in run mode, you can still delete things from
the storyboard. This is bad.

It might be cool if there wasn't a separate sketch window. If you
could zoom in and out of the storyboard, hide and show arrows, and
move screens around, you wouldn't need a sketch window. I found mov-
ing screens between the sketch and storyboarding windows to be very
confusing.

Again, the value of sketching widgets seemed less and less to me as
I had to group and ungroup, change guesses, and so on. I think a
more direct interface to modifying widgets than HyperCard/VB would
be really nice, though.

Add a color palette! 2 colors (black and green) is not enough for
some prototypes, like a weather map."

» (17) no comments

C.5. POST-EVALUATION QUESTIONNAIRE RESULTS 197

Engineer Post-Evaluation Questionnaire

1. Assuming that the SILK system was significantly faster and less buggy than the pro-
totype, do you think it would be a better tool for interface design than existing tools (i.e.,
paper and prototyping tools such as HyperCard, Director, and Visual BASIC)?

» (8) "Yes, in some situations."

» (10) "Yes."

» (12) "Hard to say."

» (14) "N/A."

» (16) "Don't know."

» (18) participant did not answer this question

Why or why not?

» (8) "The editing, saving, and manipulation facilities beat pencil
and paper, but they are slower to use. It seems quicker to use than
VB or HyperCard, although the finished prototype is also less pol-
ished. "

» (10) "It's more obviously a sketch, and sets the "drafting" tone
more appropriately."

» (12) "I have no idea about the development of the user interface."

» (14) "I haven't used comparable systems, and therefore don't have
points of comparison."

» (16) no comments

» (18) no comments

Usability Problems
Did you notice the designer having problems with any of the following:

2. Understanding how to carry out the tasks (check one):

{8.12. 14} ->3 no problems {10. 16. 18} -> 3 minor problems major problems

Please explain:

» (8) "But I had some difficulty figuring out how to understand the
tasks."

198

» (10) "In trying to bring up a sketch for detailed looking she tried
to use a sketching gesture!"

» (12) no comments

» (14) no comments

» (16) "Wasn't aware of SILK's capabilities (e.g., clickable image
map)."

» (18) "Sometimes took a second attempt to make the right thing hap-
pen, unsure whether 'copy' had actually been made."

3. Knowing what to do next to complete their task (check one):

{8. 10. 12. 14} ->4 no problems (18}-> 1 minor problems major problems

» (16) participant did not answer this question

Please explain:

» (8) "Again, the designer had a better handle on what was going on
than I did."

» (10) no comments

» (12) no comments

» (14) no comments

» (16) no comments

. » (18) "Still unsure of what to do with date/time."

4. What are the best aspects of SILK for the user?

» (8) "Flexibility to sketch a wider variety of user interfaces than
you can make with traditional widget toolkits."

» (10) "Seemed easy to use and quick to put together a prototype in."

» (12) "Easy to manipulate. Straightforward display."

» (14) "Fast, easy modeling of user interface screens. Good modeling
of relations between various phases in the user dialog."

» (16) no comments

» (18) "Quick to make changes and then see how the interface would
look."

C.5. POST-EVALUATION QUESTIONNAIRE RESULTS 199

5. What are the worst aspects of SILK for the user?

» (8) "Manipulating the mouse to draw is slow. Its difficult to spec-
ify subtle UI manipulation issues (i.e., double-click vs. single-
click) ."

» (10) "Not sure, but it seemed slightly laborious for her to place
text on multiple copies of the 'same' screen."

» (12) "No hints on how to proceed."

» (14) "From the interaction with the designer, it appeared there
was not good way of modeling the system's reaction to user input
errors, also, no provisions for modeling certain types of UI con-
trols (scroll boxes, etc.)."

» (16) "Seemed to go through quite a lot of interaction just to
change a small thing.

Geared towards discrete modeling. Not easy to see the effects of
sliding the scrollbar or for the designer to change them."

» (18) "Occasional pauses were annoying."

6. What were the most common mistakes the system made?

» (8) "Crashing. Not properly dealing with links that were modified
and changed."

» (10) "Didn't notice any."

» (12) "No major mistakes, just a bit slow."

» (14) "No mistakes in this experiment."

» (16) no comments

» (18) "Didn't notice any."

Please write any other recommendations and comments you might have on SILK here
and on the back:

» (8) "Drawing with a mouse is difficult. It really needs a pen and
tablet.

Although it provides much more free-form design capabilities than a
drag & drop interface designer like Visual Basic or Builder Xces-
sory, it's sometimes more of a pain to draw things like buttons than
it is to drag & drop them from a palette. A hybrid design might be
useful.

200

The storyboard and links are great."

» (10) "At one point she said 'I don't really see it flashing [when
changing from one snapshot of a screen to another] but rather the
things that change changing by themselves." - It might be good to
support this."

» (12) no comments

» (14) no comments

» (16) "Built-in graphics/icons would be helpful."

» (18) "It seemed useful for quickly going through a simple inter-
face design."

APPENDIX D

SILK Tutorial and Reference

D.l Introduction
This document is a tutorial for using the SILK user interface design system. SILK is a
system in which a designer uses a mouse or electronic pad and pen to sketch user inter-
face widgets, add behaviors via storyboarding, and test the interfaces out. This docu-
ment will take the reader through building an example application that illustrates the
features of SILK.

D.2 Sketching vs. Gestures
There are three main ways of interacting with SILK. It is important to get these clear
before starting. You are able to draw widgets and other UI elements by holding down
the left button on the mouse and drawing. You can use gestures to perform editing
commands by holding down the middle button on the mouse and drawing. Finally, all
editing commands have an equivalent that can be selected from the SILK controls
window.

D.3 Basic Components
The primary method of interaction with SILK is by sketching. SILK tries to recognize
the basic shapes that the designer sketches with a single stroke of the pen (i.e., not lift-
ing up the pen or mouse button during the stroke) and then presents the results of its
guesses with the Primitive Type buttons at the bottom of the SILK controls win-
dow (see Figure D-l).

201

202

SILK Controls \ . j j

File Edit Arrange Recognition Storyboard

Design Name: foo

Sketch \s Run .. v>Annotate v>Decorate

New Guess| Widget Type: Radio-Button

Z--~'.-.:: | Check-Box 11 Radio-Button ::->r.i. ?-.:.- |

: Texb^gieid > | ■■Scroll-Bar | Scroll-'fin j ; .Palette ~ |

:.:'.::,-:■;„-.-.■ | '■ \ :i.-.-;.-..T':-.-..-rr.r.-:-L | ■:,:.^:-.-:-I?--:-."-:.:.-?1 | Multiple_Objects |

^:':::iy'';::.:': ,:**iinitive Typer ;

Rec-ta-ffgla | O'rclo : J-■. Lina | - Taxe | unracogn ■ yed |

Figure D-1. SILK Controls window.

The basic components that SILK recognizes include rectangles, circles, lines,
and text. If a basic component does not fit into one of those categories, it is labeled as
unrecognized. The basic components are illustrated in Figure D-2.

yi
/W\$N/Wrtj

Figure D-2. Basic components recognized by SILK: rectangle, circle, line, and text.

The basic components can be sketched by moving the mouse while holding
down the left button. Each shape must be drawn with a single stroke, that is, you
cannot create a rectangle by drawing four lines. The suggested stroke directions are
given by the arrows in Figure D-2.

When SILK makes a mistake, you can correct the system by clicking on the
desired Primitive Type button. It is important to do this because over time the sys-
tem will get better at recognizing the way you draw the basic components.

Exercise: Try drawing each of these shapes in the SILK sketch window and see how
the system reports its guess of the type in the SILK controls window.

D.4. EDITING COMMANDS AND GESTURES 203

D.4 Editing Commands and Gestures
SELK changes the color of the last basic component drawn to purple so that you know
which object is selected. You can resize and move objects by dragging with the left
button or middle button on the selection handles (see Figure D-3). The black han-
dles are used for resizing the object and the white handles are used to move the object.
Clicking on an object with the left or middle button will also select the object.
You must click on the outline of the object - not in the center.

Figure D-3. A selected object with selection handles.

Exercise: Draw a circle in the SILK sketch window and then use the selection han-
dles to resize it. Then move the circle. Now select another object that you drew previ-
ously and do the same.

To delete an object, first select it and then hit the Back space key. You can also
use cut, copy, Paste, clear, and undo from the Edit menu.

SILK also allows the use of gestures for specifying many of the editing opera-
tions (see Figure D-4). Gestures are created by holding down the middle button and
making the proper pen stroke.

^AjVh

Figure D-4. Editing gestures: clear, group, ungroup, new guess.

204

Exercise: Try grouping a few of the objects you have drawn and then move or resize
the entire group. Now try deleting the group with the clear gesture. Do not try the "new
guess" gesture at this time as it is only useful for reguessing the types of entire widgets
rather than basic components. Note: Holding down the shift key while clicking can
be used for selecting multiple objects at once.

Exercise: An easy way to clear the entire sketch is to select clear sketch from the
Edit menu. Try that now.

Note: The group and ungroup gestures are not too useful without an electronic
pen, so you may wish to just use the equivalent menu items for these gestures while
working with SILK.

D.5 Combining Basic Components Into
Widgets
The basic components are usually combined together in order to sketch user interface
widgets (e.g., scrollbars, buttons, and windows). For example, specifying a button is as
easy as sketching a piece of text inside of a rectangle or oval (see Figure D-5)

Figure D-5. Sketched button is made up of text inside of rectangle / oval.

Exercise: Sketch a button.

SILK tries to infer that the two separate basic components (i.e., the text and the
oval) combine to make-up a button. It informs the user of this by displaying Button in
the widget Type field of the SILK controls window (see Figure D-l).

Sometimes SILK may incorrectly infer what the widget type is. For example,
radio buttons and check boxes look quite similar (see Figure D-6). The only difference

O \y\AW O \MAA^
Figure D-6. Check box and radio button widgets.

D.6. PRACTICE DESIGN PROBLEM 205

between the two widgets is that a check box has a small rectangle to the left of some
text, whereas a radio button has a small circle. If SILK makes the wrong inference, the
designer can try the next best guess by clicking on the New Guess button in the SILK

controls window or by drawing the New Guess gesture with the middle mouse button
held down. Alternatively, the correct inference can be selected by clicking on one of
the buttons under the widget Type field in the SILK controls window.

Note: clicking on the New Guess button when there are no further inferences will
cause SILK to ungroup the objects in question. Selecting one or more of them and then
clicking on New Guess again will cause the original inference to be chosen again.

Hint: When objects do not group together the way you would expect, try moving
them closer together and clicking on the New Guess button.

Exercise: Sketch a radio button and then see which inference SILK comes up with.
Click on the New Guess button to see the next best inference.

Another widget that SILK can recognize is a text field. This is specified by
sketching some text with a rectangle to the right of it (see Figure D-7).

^/A/wOf
Figure D-7. Text field widget.

Exercise: Sketch a text field.

D.6 Practice Design Problem
You will design an interface to a service that will allow potential home buyers to view
houses on the market using a home computer. The service will allow the user to spec-
ify various search criteria such as price and location, after which the system will show
a series of photos for each of the available houses and allow the user to set up an
appointment to visit the house.

This document will lead you through building a possible interface to this system.
You should follow the steps in the document and try to build the interface in order to
become familiar with SILK. Sometimes the system will make a mistake. That is, the
system will not do what you expected it to. Please inform us when this happens so that
we can take note of it.

206

The first step is to sketch the opening search screen that allows the user to spec-
ify a price range and city in which to search for available houses. The screen should
have a title, two text fields for the price range, a text field for the location, and two but-
tons (one for starting the search and one for clearing the form). An example of such an
interface is shown in Figure D-8.

Exercise: Duplicate the interface shown in Figure D-8.

SILK Sketch

A/AA^ \ ^

\\/yv\s\^

Figure D-8. Sketched search form.

D.7 Replacing Text

Now we will replace the "squiggly" lines representing text with typed text. This is
done by drawing a small caret gesture while the middle button is held down on top
of the text (see Figure D-9). Pressing the Return key saves the text. Pressing con-
troi-g cancels the text.

Figure D-9. A Caret gesture on top of some text to replace.

DJ. REPLACING TEXT 207

You can also use the same caret gesture to edit existing typed text. Just draw the
caret gesture on top of the text to be edited and you will be given a cursor in the text.

Exercise: Replace the "squiggly" text with real text as we have done in Figure D-10.
Try editing the text of one of the items after you have already replaced the squiggly text.

^-E

il

SILK Sketch: LJJ

Search Criteria

price range

from:

Figure D-10. The search form with real text for labels.

Now is a good time to save your work. You should do that after each major piece
has been sketched so that it will be easy to recover if the system crashes. To save the
sketch select save Design... from the File menu of the SILK controls window.
Type in a filename in the dialog box and click on save. Please use filenames of the
form: tutoriall, tutoria.12, etc. It would also be a good time to print your work. You can
do this by selecting Print Design... from the File menu.

208

D.8 Storyboarding
Now you can copy the screen illustrated in the sketch to the SILK storyboard win-
dow. You do this by selecting Copy Screen to Storyboard from the Storyboard
menu of the SILK controls window. You will leave it there for now and come back to
it later.

Now you will type in some sample values in the text fields of the search form. In
order to do this just use the caret gesture on top of the text field boxes as you did ear-
lier for replacing "squiggly" lines.

Exercise: Fill in the text fields as in Figure D-ll.

as£

i SILK Sketch 5 - ! Jli

Search Criteria

price range

from:
100, 000 \ t0: [150, 000 J}

city:

search

Figure D-ll. The search form with values for the text fields.

Now you can copy this new version of the sketch to the SILK storyboard win-
dow. You do this by selecting copy screen to storyboard. You should now have
two versions of the search criteria form in the SILK storyboard window.

SILK storyboards allow you to flip between screens on button clicks. This is
done by drawing arrows with the left mouse button in the SILK storyboard win-
dow. We would like to go from the blank Search Criteria screen to the filled-in one

D.9. RUN MODE 209

when the user clicks on any of the text fields (we will pretend that they typed in the
text). To do this you draw arrows in the SILK storyboard window using the left but-
ton from the text fields in the blank form to the filled-in form as in Figure D-12. We
would also like to go from the filled-in Search Criteria screen to the blank one when
the user clicks on the Clear button. To do this you draw an arrow from the Clear button
in the filled-in form to the blank form.

Drawing arrows means just drawing a line between the two points you wish to
connect. SILK inserts the arrow anchor and pointer for you.

Exercise: Draw the arrows as shown in Figure D-12.

Now is a good time to save and print your work.

EH3 SILK Storyboard: j^r
Edit Sketch

Search CrjXc-ri-a"""

price range

_±D C=3&

L
C search] f >"

J j clear

Search Criteria

price range
| " 100. 000 ^ Ll50, 000 I

bant. a Monica, CA

C search J / "' N

Figure D-12. Storyboard for filling-in and clearing the Search Criteria form.

D.9 Run Mode
SILK's Run mode will let you try this interface out. First you need to get the blank
Search Criteria form back to the sketch window, as that is the screen to interact with
first. Select that screen by clicking on it with the middle button. Then select copy
Screen to Sketch from the Sketch menu in the SILK Storyboard window.

To switch into Run mode, click on the Run radio button in the SILK controls
window. Note that the cursor changes to indicate the mode you are in. You can then
test the interface by clicking on the text fields and the Clear button in the SILK sketch
window. The screen should make the desired transition.

Exercise: Copy the proper screen to the SILK sketch window and switch to run mode.
Test the interface by clicking on the text fields and the Clear button.

210

You can now design the screen that will appear when the user clicks on the
Search button. The screen will consist of a scrolling window that contains two poten-
tial houses. The houses are sketched along with some information on the house and
buttons from each house for making an appointment. In addition, there is a button to
bring up the Search Criteria form in order to perform a new search. The rough sketch
is illustrated in Figure D-13.

Exercise: Make sure to switch back to sketch mode and then duplicate the rough sketch
from Figure D-13.

Now is a good time to save and print your work.

Figure D-13. Rough sketch of houses found from the search.

D.9. RUN MODE 211

Next, fill in the details on the rough sketch to get something like Figure D-14.

Exercise: Fill in the details on your rough sketch like in Figure D-14 and copy the
sketch to the SILK storyboard window. We will come back to it later.

Now is a good time to save and print your work.

:J_J_

to

L~J

335 12th St., Santa Monica

$122, 000

make appointment

PI

a n □'

1525 Ocean, Santa Monica

$148, 000

make appointment

fnew search J

Figure D-14. Our houses screen after adding more details.

212

Finally, you need to design a window for scheduling an appointment for houses
that the user likes. The example shown in Figure D-15 could be used for testing the
application.

Exercise: Sketch a rough version of the appointment screen and then fill in the details.
When you are finished, copy it to the SILK storyboard window.

Now is a good time to save and print your work.

! -• i SILK Sketch I 1.'.Jli

Appointment Scheduler

Address:

335 12th St.

Santa Monica, CA

Wilson, Wilson, &. Wilson Reality

Q

phone

buy

John Wilson

rent

ll

e> home o work

OK

• Check boxes

■Radio buttons

Figure D-15. Appointment scheduling screen.

D.9. RUN MODE 213

Now you are ready to add the final arrows to finish our application. You need an
arrow from the Search button of the filled-in Search Criteria form to the houses screen.
You also need an arrow from the Make Appointment button of the houses screen to the
appointment scheduling screen. This is illustrated in Figure D-16. Remember, you
draw the arrows with the left mouse button.

Exercise: Draw the needed arrows as shown in Figure D-16.

Now is a good time to save and print your work.

|SILKStorybo«rdg m
Bdit Sketch

Satrch CriCarl*

p*ea" I 100. 000~~^ «: tl5C

=l=y: ~£Z

C ,~k"*\/—<—>.

Rppoincm«nt Ech*dul«x

ddr.ia: I
115 12th St. |
Santa Monica, CA

■lilson, Wilson, * Wilson R.ality

phone C ZJ

£> ho«. O uork

Co

2L
1J5 13th St.. Santa MOP'-

A

ak« appoin t n* ni

(gr~. ■> /

Figure D-16. Complete storyboard for our house search application.

Exercise: Now, the entire application can be tested by copying the blank search screen
to the SILK sketch window, switching to run mode, and trying it out!

You should now read the attached SILK Quick Reference Manual to make sure
you understand the features available to you.

214

D.10 SILK Quick Reference Manual

This manual gives a complete listing of the different commands and operations sup-
ported by SILK.

D.10.1 SILK Modes

SILK supports the following modes of operation that can be selected from the radio but-
tons in the SILK controls window:

•Sketch - all sketched objects are interpreted as possible widgets or other basic
primitives.

•Run - allow the user to manipulate the interface widgets.

•Annotate - all strokes and typed text are annotations for documentation (these
marks are hidden when in any other mode).

•Decorate - strokes and text are treated as uninterpreted graphics.

Note: Strokes can be cut & pasted between the different layers associated with
each mode.

D.10.2 Mouse buttons

middle or left button click select object

left button draw sketch object

left button or middle button on selection handles move or resize

middle button draw editing gesture

Note: Holding down the shift key while clicking can be used for selecting mul-
tiple objects at once.

D.W. SILK QUICK REFERENCE MANUAL 215

D.10.3 Supported Basic Components

o ->■ /W\^AAA^

Figure D-17. Rectangle, circle, line, and text basic components.

D.10.4 Supported Editing Gestures

M/vyVA,

Figure D-18. Clear, group, ungroup, new guess, and text editing gestures.

D.10.5 Adding Typed Text

Typed text can be either typed directly on the sketch or can be used to replace the
"squiggly" lines representing text. Both can be accomplished by drawing the caret
gesture (see Figure D-19)using the middle mouse button at the desired position of the
new text. After typing the text, press the Return key to save the text. To cancel the text,
press Control-g.

Figure D-19. Caret gesture for inserting typed text.

216

D.10.6 Supported Widgets

Note: SILK is sensitive to the position and sizes of the primitive components that make
up the following widgets, so it is wise to sketch them in a similar manner to the exam-
ples. The arrows are drawn as a guide on where and in what direction to start a basic
component. The objects do not need to be drawn in that manner, since correcting those
primitive inferences will cause the system to learn, but SILK will do better if the direc-
tions and starting positions illustrated below are used.

Figure D-20. A button.

CfM/i/^
Figure D-21. A check box.

O^wv
Figure D-22. A radio button.

SILK also recognizes vertical and horizontal sequences of buttons, check boxes, and
radio buttons as panels.

D.W. SILK QUICK REFERENCE MANUAL 217

Figure D-23. A menu bar. (Note: must be drawn at upper left corner of the SILK sketch window.)

^/A/W^t
Figure D-24. A text field.

n

Figure D-25. Vertical and horizontal scroll bars.

218

Figure D-26. A scrolling window. (Note: can have any combination of scroll bars at left and below).

*-

Figure D-27. A palette. (Note: arbitrary graphics can be drawn in the boxes.)

D.W. SILK QUICK REFERENCE MANUAL 219

D.10.7 Storyboarding

We have chosen a simple model for our storyboarding language. Our visual language
has two types of objects, screens and arrows. Each screen is a sketch of an interface in
a particular state. Arrows connect objects contained in one screen with a second
screen. The arrow indicates that when the object in the first screen is manipulated (our
current model is limited to mouse clicks), the system should display the second screen
in the sketch window instead of the first. The example shown in Figure D-28 specifies
that the dialog box should appear when the left button is pressed.

Figure D-28. Story board that causes the dialog box to appear and disappear.

The designer constructs storyboards by sketching screens in the SILK sketch
window. Screens are then copied to the storyboard window using either copy screen
to Storyboard or Paste Screen to Selected Storyboard Screen from the Sto-
ryboard menu in the SILK controls window. At this point, the original screen can be
modified in the sketch window to show how its state might change. After this, the new
screen is also copied to the storyboard window. Now, the designer can start drawing
arrows in the storyboard window that indicate screen sequencing or more screens can
be produced.

The arrows can be drawn from any widget, graphical object (e.g., decorations),
or the background to another screen. Thus, the designer can cause transitions to occur
when the user clicks on any of these items. The arrows show an anchor point on the
object they were drawn from and an arrowhead on the screen they are drawn to.

Arrows and screens can be deleted from the storyboard window. Screens can
also be cut, copied, and pasted.

220

D.10.8 Giving Hints to the Inference Engine

There are a few ways to help SILK's inference engine be more successful at guessing
the proper widgets.

•always correct the system by clicking on the proper Primitive Type button
when SILK makes a mistake at that level.

•use multiple-selections (e.g., select multiple pieces of a sketched widget) to
inform SILK of related items and to ignore internal rules for "nearness" and
"containment". For example, by selecting a circle and a text object that are far
from each other, we can still get the system to infer it as a radio button.

D.10.9 Menu Items

This section describes all of the commands available from the menus in the SILK con-
trols window and the SILK storyboard window.

D.10.9.1 Control Window Menu Items

File menu:

New Design - delete current design from both the sketch and storyboard
windows

Open Design... - load a saved design from disk

Save Design... - save a design to disk

Print Design... - print design to printer named by shell environment variable
SPRINTER

Quit - exit SILK

D.W. SILK QUICK REFERENCE MANUAL 221

Edit menu:

Undo - undo last cut, copy, paste, or clear

Cut - delete selected object and move to the copy buffer

Copy - copy selected object to copy buffer

Paste - paste object from copy buffer

Clear - delete selected object

Clear Sketch - delete all objects in sketch window

Select All - select all objects in sketch window

Scale Selection... - scale selected object(s)

Arrange menu:

Group - group selected objects

Ungroup - ungroup selected group object

Make Opaque - makes the given object or group opaque

Recognition menu:

Transform... - transform widgets in sketch window to a Motif interface and
place them in the Finished window

New Guess - reinfer widgets related to selected object

Storyboard menu:

Copy Screen to Storyboard - copy screen in sketch window to storyboard
window

Paste Screen to Selected Storyboard Screen - copy screen in sketch window
and paste it over the selected screen in the storyboard window

222

D.10.9.2 Storyboard Window Menu Items

Edit menu:

Undo - unimplemented

Cut - delete selected screen and move to the copy buffer

Copy - copy selected screen to copy buffer

Paste - paste screen from copy buffer

Clear - delete selected screen or arrow

Clear Storyboard - delete all screens and arrows in storyboard window

Search Annotations... - brings up a dialog box that allows a text string search of
the annotations on all screens in the storyboard.

Sketch menu:

Copy Screen to Sketch - copy selected screen from storyboard window to
sketch window.

APPENDIX E

SILK Rules

This appendix contains the rules used by SILK for recognizing widgets from among
the primitive components and previously recognized widgets sketched by the designer.
The description of the recognition algorithm is given in Chapter 3, "Widget Recogni-
tion". The actual rules used by SILK are LISP functions that may include if state-
ments and iterators (e.g., doiist) over lists of objects that satisfy nearness,
containment, or sequence relationships. Thus, there is no need to test the rest of the
rule if no such relationship exists. These rules have been rewritten here for clarity to
contain only and's, or's, and calls to simple functions that test for the existence of a
property (e.g., contains-p). In addition, only the "test" parts of the rules are shown.
The "then" parts simply return a certainty value and a function to add interactive
behavior to the parts of the widget identified by the "test." These "then" parts are all of
the same format as the one shown in Figure 3-20 on page 45.

(and (contains-p container containee)
(or (rectangle-p container)

(circle-p container))
(text-p containee)
(button-size-p container))

Figure E-l. Test for button rule which results in certainty value of 1.

223

224

(and (contains-p container containee)
(rectangle-p container)
(rectangle-p containee)
(skinny-p container :vertical))

Figure E-2. Test for vertical scrollbar rule which results in certainty value of 1.

(and (contains-p container containee)
(rectangle-p container)
(rectangle-p containee)
(skinny-p container :horizontal))

Figure E-3. Test for horizontal scrollbar rule which results in certainty value of 1.

(and (scroll-bar-p compl)
(vertical-p compl)
(rectangle-p comp2)
(horizontal-left-p compl comp2)
(near-p compl comp2)
(close-height-p compl comp2))

Figure E-4. Test for new scrolling window rule with scrollbar on left which results in certainty
value of 1.

(and (scroll-bar-p compl)
(horizontal-p compl)
(rectangle-p comp2)
(vertical-above-p compl comp2)
(near-p compl comp2)
(close-width-p compl comp2))

Figure E-5. Test for new scrolling window rule with scrollbar below which results in certainty
value of 1.

225

(and (scroll-bar-p compl)
(vertical-p compl)
(scroll-win-p comp2)
(null (has-v-scroll-bar-p comp2))
(horizontal-left-p compl comp2)
(near-p compl comp2)
(close-height-p compl comp2))

Figure E-6. Test for scrolling window rule with new scrollbar on left which results in certainty
value of 1.

(and (scroll-bar-p compl)
(horizontal-p compl)
(scroll-win-p comp2)
(null (has-h-scroll-bar-p comp2))
(vertical-above-p compl comp2)
(near-p compl comp2)
(close-width-p compl comp2))

Figure E-7. Test for scrolling window rule with new scrollbar on bottom which results in
certainty value of 1.

(and (rectangle-p compl)
(text-p comp2)
(near-p compl comp2)
(aligned-p compl comp2 :bottom)
(horizontal-left-p compl comp2)
(check-box-width-p compl))

Figure E-8. Test for check box rule which results in certainty value of 1.

226

(and (circle-p compl)
(text-p comp2)
(near-p compl comp2) '
(aligned-p compl comp2 :bottom)
(horizontal-left-p compl comp2)
(check-box-width-p compl))

Figure E-9. Alternative test for check box rule which results in certainty value of 0.8.

(and (circle-p compl)
(text-p comp2)
(near-p compl comp2)
(aligned-p compl comp2 :bottom)
(horizontal-left-p compl comp2)
(check-box-width-p compl))

Figure E-10. Test for radio button rule which results in certainty value of 1.

(and (rectangle-p compl)
(text-p comp2)
(near-p compl comp2)
(aligned-p compl comp2 :bottom)
(horizontal-left-p compl comp2)
(check-box-width-p compl))

Figure E-l 1. Alternative test for radio button rule which results in certainty value of 0.8.

227

(and (or (button-p component)
(button-panel-p component))

(in-sequence-p component sequence))

Figure E-12. Test for button panel rule which results in certainty value of 1.

(and (or (check-box-p component)
(check-box-panel-p component))

(in-sequence-p component sequence))

Figure E-13. Test for check box panel rule which results in certainty value of 1.

(and (or (radio-button-p component)
(radio-button-panel-p component))

(in-sequence-p component sequence))

Figure E-14. Test for radio button panel rule which results in certainty value of 1.

(or (and (menu-bar-p component)
(in-sequence-p component sequence :horizontal))

(and (text-p component)
(in-sequence-p component sequence :horizontal))
(upper-left-p (first sequence))))

Figure E-15. Test for menu bar rule which results in certainty value of 1.

228

(and (contains-p container containee)
(or (rectangle-p container)

(palette-p container))
(or (and (line-p containee)

(close-size-p containee container
:width))

(not (line-p containee))))

Figure E-16. Test for palette rule which results in certainty value of 1.

(and (text-p compl)
(rectangle-p comp2)
(near-p compl comp2)
(aligned-p compl comp2 :bottom)
(horizontal-left-p compl comp2))

Figure E-17. Test for text field rule which results in certainty value of 1.

References

[Apple 1993] Apple. HyperCard. Apple Computer Inc., Cupertino, CA. 1993.

[Apte 1993a] Ajay Apte and Takayuki Dan Kimura. "A Comparison Study of the Pen
and the Mouse in Editing Graphic Diagrams". Proceedings of 1993 IEEE Symposium
on Visual Languages, Bergen, Norway, IEEE Computer Society Press. Aug. 24-27,
1993. pp. 352-357.

[Apte 1993b] Ajay Apte, Van Vo and Takayuki Dan Kimura. "Recognizing Multi-
stroke Geometric Shapes: An Experimental Evaluation". Proceedings of the ACM
Symposium on User Interface Software and Technology, UIST '93, Atlanta, GA,
November 3-5, 1993. pp. 121-128.

[Bederson 1994] Benjamin B. Bederson and James D. Hollan. "Pad++: A Zooming
Graphical Interface for Exploring Alternative Inteface Physics". Proceedings of the
ACM Symposium on User Interface Software and Technology, UIST '94, Marina del
Rey, CA, November 2-A, 1994. pp. 17-26.

[Black 1990] Alison Black. "Visible Planning on Paper and on Screen: The Impact of
Working Medium on Decision-making by Novice Graphic Designers," Behaviour &
Information Technology. 9(4): pp. 283-296, 1990,

[Borland 1996] Borland. Delphi. Borland International Inc., 100 Borland Way, Scotts
Valley, CA 95066, (408) 431-1000. 1996.

[Boyarski 1994] Daniel Boyarski and Richard Buchanan. "Computers and Communi-
cation Design: Exploring the Rhetoric of HCI," Interactions. 1(2): pp. 24-35, April,
1994.

[Branco 1994] V. Branco, A. Costa and EN. Ferreira. "Sketching 3D Models with 2D
Interaction Devices," Computer Graphics Forum. Proceedings of Eurographics '94.
13(3): pp. 489-502, Sept. 12-16,1994.

229

230

[Brocklehurst 1991] E. R. Brocklehurst. "The NPL Electronic Paper Project," Interna-
tional Journal of Man-Machine Studies. 34(1): pp. 69-95, 1991.

[Burgess 1993] John Burgess. "The Newton: PC Prophecy, or a Pratfall". The Wash-
ington Post. Washington, DC, October 24,1993. sec. H, p. 1.

[Buxton 1986] William Buxton. "There's More to Interaction Than Meets the Eye:
Some Issues in Manual Input." User Centered Systems Design: New Perspectives on
Human-Computer Interaction. D. A. Norman and S. W Draper, Eds. Hillsdale, N.J.:
Lawrence Erlbaum Associates, pp. 319-337. 1986.

[Buxton 1983] W Buxton, M.R. Lamb, D. Sherman and K.C. Smith. "Towards a Com-
prehensive User Interface Management System," Computer Graphics. Proceedings of
SIGGRAPH '83.17(3): pp. 35-42, July, 1983.

[Bylinksy 1993] Gene Bylinksy. "Russian Help for Apple's Newton," Fortune. 128(1):
p. 12, July 12, 1993.

[Callahan 1988] Jack Callahan, Don Hopkins, Mark Weiser and Ben Shneiderman.
"An Empirical Comparison of Pie vs. Linear Menus". Proceedings of Human Factors
in Computing Systems, ACM CHI '88 Conference, 1988. pp. 95-100.

[Cardelli 1987] Luca Cardelli. Building User Interfaces by Direct Manipulation.
Report #22, Digital Equipment Corporation, Systems Research Center, Palo Alto, CA.
1987.

[Cardelli 1988] Luca Cardelli. "Building User Interfaces by Direct Manipulation".
Proceedings of ACM SIGGRAPH Symposium on User Interface Software and Technol-
ogy, UIST '88, Banff, Canada, October, 1988. pp. 152-166.

[Carr 1991] Robert Carr and Danny Shafer. The Power of PenPoint. Addison-Wesley.
1991.

[Chang 1987] Shi-Kuo Chang. "Visual Languages: A Tutorial and Survey," IEEE Soft-
ware. 4(1): pp. 29-39, January, 1987.

[Chang 1986] Shi-Kuo Chang, Tadao Ichikawa and Panos A. Ligomenides, Eds. Visual
Languages. New York: Plenum Press. 1986.

[Charniak 1991] Eugene Charniak. "Bayesian Networks without Tears," AI Magazine.
12(4): pp. 50-63, Winter, 1991.

[Citrin 1996] Wayne Citrin and Mark D. Gross. "Distributed Architectures for Pen-
based Input and Diagram Recognition". Proceedings of ACM Workshop on Advanced
Visual Interfaces, AVI '96, Gubbio, Italy, May, 1996.

[Citrin 1995] W. Citrin and McWhirter J. "Diagram Entry Mechanisms in Graphical
Environments". Proceedings of Human Factors in Computing Systems (Conference
Companion), ACM CHI '95, Denver, CO, May 7-11, 1995. pp. 294-295.

231

[Citrin 1993] Wayne V. Citrin. "Requirements for Graphical Front Ends for Visual
Languages". Proceedings of 1993 IEEE Symposium on Visual Languages, Bergen,
Norway, IEEE Computer Society Press. Aug. 24-27, 1993. pp. 142-150.

[Cypher 1993] Allen Cypher. Watch What I Do: Programming by Demonstration.
Cambridge, MA: MIT Press. 1993.

[Cypher 1995] Allen Cypher and David Canfield Smith. "KidSim: End User Program-
ming of Simulations". Proceedings of Human Factors in Computing Systems, ACM
CHI '95, Denver, CO, May 7-11,1995. pp. 27-34.

[Davis 1964] M.R. Davis and T.O. Ellis. "The Rand Tablet: A Man-Machine Graphi-
cal Communication Device". Proceedings of Fall Joint Computer Conference Pro-
ceedings (26), AFIPS, 1964. pp. 325-331.

[Design 1993] Fractal Design. Sketcher. Fractal Design Corp., P.O. Box 2380, Aptos,
CA 95001, (408)688-8800. 1993.

[Design 1996] Fractal Design. Painter 4. Fractal Design Corp., P.O. Box 2380, Aptos,
CA 95001, (408)688-8800. 1996.

[Draper 1986] Donald A. Norman and Stephen W. Draper, Ed. User Centered System
Design: New Perspectives on Human-Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates. 1986.

[Elrod 1992] Scott Elrod et. al. "Liveboard: A Large Interactive Display Supporting
Group Meetings, Presentations and Remote Collaboration". Proceedings of Human
Factors in Computing Systems, ACM CHI '92, Monterey, CA, May 3-7, 1992. pp.
599-607.

[Fehr-Snyder 1995] Kerry Fehr-Snyder. "What Ever Happened to Bob, Lisa & New-
ton? Computer Landscape is Littered With Products that Commercially Just Couldn't
Cut the Mustard". Arizona Republic. Phoenix, AZ, September 11, 1995. sec. E, p. 1.

[Ferguson 1993] Paula Ferguson and David Brennan. Motif Reference Manual. Vol-
ume 6B. O'Reilly & Associates. 1993.

[Fish 1990] J. Fish and S. Scrivener. "Amplifying the Mind's Eye: Sketching and
Visual Cognition," Leonardo. 23(1): pp. 117-126, 1990.

[Fisher 1992] Gene L. Fisher, Dale E. Busse and David A. Wolber. "Adding Rule-
Based Reasoning to a Demonstrational Interface Builder". Proceedings of ACM Sym-
posium on User Interface Software and Technology, UIST '92, Monterey, CA,
November 15-18,1992. pp. 89-97.

[Fitzgerald 1994] Michael Fitzgerald. "This Handwriting is Recognizable," Computer-
world. 28(40): p. 44, October 3,1994.

232

[Fodor 1975] Jerry A. Fodor. The Language of Thought. Cambridge, MA: Harvard
University Press. 1975.

[Frankish 1995] Clive Frankish, Richard Hull and Pam Morgan. "Recognition Accu-
racy and User Acceptance of Pen Interfaces". Proceedings of Human Factors in Com-
puting Systems, ACM CHI '95, Denver, CO, May 7-11, 1995. pp. 503-510.

[Fujisaki 1990] T. Fujisaki, T.E. Chefalas, J. Kim and C.C. Tappert. "Online Recog-
nizer for Runon Handprinted Characters". Proceedings of 10th International Confer-
ence on Pattern Recognition (1), Atlantic City, NJ, IEEE Computer Society Press.
June 16-21, 1990. pp. 450-454.

[Furnas 1986] George W. Furnas. "Generalized Fisheye Views". Proceedings of
Human Factors in Computing Systems, ACM CHI '86, Boston, MA, 1986. pp. 16-23.

[Genau 1995] Andreas Genau and Axel Kramer. "Translucent History". Proceedings
of Human Factors in Computing Systems, ACM CHI '95, Denver, CO, May 7-11,
1995. pp. 250-251.

[Gleicher 1994] Michael Gleicher and Andrew Witkin. "Drawing With Constraints,"
The Visual Computer. 11(1): pp. 39-51, 1994.

[GO 1992] GO. PenPoint User Interface Design Reference. Reading, MA: Addison-
Wesley. 1992. ISBN 0-201-60858-8.

[Goel 1995] Vinod Goel. Sketches of Thought. Cambridge, MA: The MIT Press.
1995.

[Goldberg 1993] David Goldberg and Cate Richardson. "Touch-typing With a Sty-
lus". Proceedings of Human Factors in Computing Systems, ACM INTERCHI '93,
Amsterdam, The Netherlands, April 24-29, 1993. pp. 80-87.

[Golin 1990] Eric J. Golin. A Method for the Specification and Parsing of Visual Lan-
guages. Ph.D. dissertation, Department of Computer Science, Brown University, Prov-
idence, R.I. 1990.

[Gomoll 1990] Kathleen Gomoll. "Some Techniques for Observing Users." The Art of
Human-Computer Interface Design. B. Laurel, Ed. Reading, MA: Addison-Wesley,
pp. 85-90. 1990.

[Gould 1985] J.D. Gould and C. Lewis. "Designing for Usability: Key Principles and
What Designers Think," Communcations of the ACM. 28(3): pp. 300-311, March,
1985.

[Gross 1994] Mark D. Gross. "Recognizing and Interpreting Diagrams in Design".
Proceedings of the ACM Conference on Advanced Visual Interfaces '94, Bari, Italy,
June, 1994. pp. 89-94.

233

[Gross 1996] Mark D. Gross and Ellen Yi-Luen Do. "Ambiguous Intentions: A Paper-
like Interface for Creative Design". Proceedings of ACM Symposium on User Interface
Software and Technology, UIST '96, Seattle, WA, November 6-8, 1996. pp. 183-192.

[Halbert 1984] Daniel C. Halbert. Programming by Example. Computer Science Divi-
sion, EECS Department, University of California, Berkeley, CA. 1984.

[Hamilton 1992] Booz Allen Hamilton. NeXTStep vs. Other Development Environ-
ments; Comparative Study. Report available from NeXT Computer, Inc.

[Harel 1987] David Harel. "Statecharts: A Visual Formalism for Complex Systems,"
Science of Computer Programming. 8(3): pp. 231-274, 1987.

[Helm 1991] Richard Helm, Kim Marriott and Martin Odersky. "Building Visual Lan-
guage Parsers". Proceedings of Human Factors in Computing Systems, ACM CHI '91,
April 27-May 2, 1991. pp. 105-112.

[Henderson Jr 1986] D. Austin Henderson Jr. "The Trillium User Interface Design
Environment". Proceedings of Human Factors in Computing Systems, ACM CHI '86,
Boston, MA, April, 1986. pp. 221-227.

[Herbsleb 1993] James D. Herbsleb and Eiji Kuwana. "Preserving Knowledge in
Design Projects: What Designers Need to Know". Proceedings of Human Factors in
Computing Systems, INTERCHI '93, Amsterdam, The Netherlands, April 24-29,
1993. pp. 7-14.

[Hosaka 1977] Mamoru Hosaka and Fumihiko Kimura. "An Interactive Geometrical
Design System with Handwriting Input". Proceedings of Information Processing, IFIP
'77, Toronto, Canada, North-Holland Publishing Co. Aug. 8-12, 1977. pp. 167-172.

[Hussain 1972] A.B. Shahidul Hussain, Godfried T. Toussaint and Robert W. Donald-
son. "Results Obtained Using a Simple Character Recognition Procedure on Munson's
Handprinted Data," IEEE Transactions on Computers. C-21(2): pp. 201-205, 1972.

[Hutheesing 1996] Nikhil Hutheesing. "The Mother of Development," Forbes. 157(2):
pp. 88-89, Jan. 22,1996.

[Insight 1995] Insight. Squiggle. Insight Development Corp., 2420 Camino Ramon,
Suite 205, San Ramon, CA 94583, (510) 244-2000. 1995. Purchased from Premisys
Corp.

[Instruments 1989] National Instruments. LabVIEW. National Instruments Corp., 6504
Bridge Point Pkwy, Austin, Texas, 78730. 1989.

[1ST 1996] 1ST. X-Designer. Imperial Software Technology, 120 Hawthorne Ave.,
Suite 101, Palo Alto, CA 94301. (415) 688-0200. 1996.

[Jacob 1986] Robert J. K. Jacob. "A Specification Language for Direct-manipulation
User Interfaces," ACM Transactions on Graphics. 5(4): pp. 283-317, October, 1986.

234

[Karsenty 1992] Solange Karsenty, James A. Landay and Chris Weikart. "Inferring
Graphical Constraints with Rockit". Proceedings of People and Computers VII, Brit-
ish Computer Society HCI '92, York, England, September, 1992. pp. 137-153.

[Kolli 1993] Raghu Kolli and Jim Hennessey. "Deriving the Functional Requirements
for a Concept Sketching Device: A Case Study". Proceedings of Human Computer
Interaction, Vienna Conference, VCHCI '93, Vienna, Austria, Springer-Verlag. Sep-
tember 20-22, 1993. pp. 184-195.

[Kramer 1994] Axel Kramer. "Translucent Patches - Dissolving Windows". Proceed-
ings of ACM Symposium on User Interface Software and Technology, UIST '94,
Marina del Rey, CA, November 2-4,1994. pp. 121-130.

[Kurlander 1993] David Kurlander. Graphical Editing by Example. Ph.D. dissertation,
Department of Computer Science, Columbia University, New York. 1993.

[Kurtenbach 1991a] Gordon Kurtenbach and Bill Buxton. "GEdit: A Test Bed for Edit-
ing by Contiguous Gestures," ACM SIGCHI Bulletin. 23(2): pp. 22-26, 1991.

[Kurtenbach 1991b] Gordon Kurtenbach and William Buxton. "Issues in Combining
Marking and Direct Manipulation Techniques". Proceedings of ACM SIGGRAPH and
SIGCHI Symposium on User Interface Software and Technology, UIST '91, Hilton
Head, SC, November 11-13, 1991. pp. 137-144.

[Lakin 1986] Fred Lakin. "Spatial Parsing for Visual Languages." Visual Languages.
S.-K. Chang, T Ichikawa and P. A. Ligomenides, Eds. New York, NY: Plenum Press,
pp. 35-85. 1986.

[Lakin 1989] Fred Lakin, John Wambaugh, Larry Leifer, Dave Cannon and Cecilia
Sivard. "The Electronic Design Notebook: Performing Medium and Processing
Medium," The Visual Computer. 5(4): pp. 214-226, 1989.

[LaLomia 1994] Mary J. LaLomia. "User Acceptance of Handwritten Recognition
Accuracy". Proceedings of Human Factors in Computing Systems (Conference Com-
panion), ACM CHI "94, Boston, MA, April 24-28, 1994. p. 107.

[Landay 1991] James A. Landay. "Tools Review: Serius - A Visual Programming
Environment," Journal of Visual Languages and Computing. 2(3): pp. 297-303, 1991.

[Landay 1996a] James A. Landay. "SJJLK: Sketching Interfaces Like Krazy". Pro-
ceedings of Human Factors in Computing Systems (Conference Companion), ACM
CHI '96, Vancouver, Canada, April 13-18,1996. pp. 398-399. Formal video program.

[Landay 1993] James A. Landay and Brad A. Myers. "Extending an Existing User
Interface Toolkit to Support Gesture Recognition". Proceedings of Human Factors in
Computing Systems (Adjunct Proceedings), ACM INTERCHI '93, Amsterdam, The
Netherlands, April 24-29,1993. pp. 91-92.

235

[Landay 1995a] James A. Landay and Brad A. Myers. "Interactive Sketching for the
Early Stages of User Interface Design". Proceedings of Human Factors in Computing
Systems, ACM CHI '95, Denver, CO, May 7-11, 1995. pp. 43-50.

[Landay 1995b] James A. Landay and Brad A. Myers. Just Draw It! Programming by
Sketching Storyboards. Report #CMU-CS-95-199, Carnegie Mellon University,
School of Computer Science, Pittsburgh, PA. 1995.

[Landay 1996b] James A. Landay and Brad A. Myers. "Sketching Storyboards to
Illustrate Interface Behavior". Proceedings of Human Factors in Computing Systems
(Conference Companion), ACM CHI '96, Vancouver, Canada, April 13-18, 1996. pp.
193-194.

[Lansdown 1995] John Lansdown and Simon Schofield. "Expressive Rendering: A
Review of Nonphotorealistic Techniques," IEEE Computer Graphics and Applica-
tions. 15(3): pp. 29-37, May, 1995.

[Larkin 1987] Jill Larkin and Herbert Simon. "Why a Diagram is (sometimes) Worth
10,000 Words," Cognitive Science. 11. 1987.

[Lee 1994] Yvonne L. Lee. "PDA Users Can Express Themselves With Graffiti," Info-
World. 16(40): p. 30, October 3, 1994.

[Lifeboat 1995] Lifeboat. Dan Bricklin's Demo. Lifeboat Publishing, Inc., 1163
Shrewsbury Ave, Shrewsbury, NJ 07702, 800-336-1166, 908-389-9227. 1995.

[Lu 1996] Cary Lu. "Newton 2.0 and Three Contenders Try to Renew the PDA Prom-
ise," Macworld, pp. 102-107, July, 1996.

[Macromedia 1994] Macromedia. Director. Macromedia Inc., San Francisco, CA.
1994.

[Martin 1990] Gale Martin, James Pittman, Kent Wittenburg, Richard Cohen and Tom
Parish. "Sign Here, Please (Interactive Tablets)," BYTE. 15(7): pp. 243-251, July,
1990.

[Meyer 1996] Jonathan Meyer. "EtchaPad - Disposable Sketch Based Interfaces".
Proceedings of Human Factors in Computing Systems (Conference Companion),
ACM CHI '96, Vancouver, Canada, April 13-18,1996. pp. 195-198.

[Microsoft 1993] Microsoft. Visual Basic. Microsoft Corp., Redmond, WA. 1993.

[Modugno 1995] Francesmary Modugno. Extending End-User Programming in a
Visual Shell with Programming by Demonstration and Graphical Language Tech-
niques. Ph.D. dissertation, Report #CMU-CS-95-130, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA. March, 1995.

236

[Modugno 1993] Francesmary Modugno and Brad A. Myers. "Graphical Representa-
tion and Feedback in a PBD System." Watch What I Do: Programming by Demonstra-
tion. A. Cypher, Ed. Cambridge, MA: MIT Press, pp. 415-422. 1993.

[Moran 1995] Thomas P. Moran, Patrick Chiu, William van Meile and Gordon Kurten-
bach. "Implicit Structures for Pen-Based Systems Within a Freeform Interaction Para-
digm". Proceedings of Human Factors in Computing Systems, CHI '95, Denver, CO,
May 7-11, 1995. pp. 487-494.

[Myers 1988] Brad A. Myers. Creating User Interfaces by Demonstration. Boston:
Academic Press. 1988.

[Myers 1990a] Brad A. Myers. "A New Model for Handling Input," ACM Transactions
on Information Systems. 8(3): pp. 289-320, July, 1990.

[Myers 1990b] Brad A. Myers. "Taxonomies of Visual Programming and Program
Visualization," Journal of Visual Languages and Computing. 1(1): pp. 97-123, March,
1990.

[Myers 1991] Brad A. Myers. "Separating Application Code from Toolkits: Eliminat-
ing the Spaghetti of Call-Backs". Proceedings of ACM SIGGRAPH and SIGCHI Sym-
posium on User Interface Software and Technology, Hilton Head, SC, November,
1991. pp. 211-220. Proceedings UIST'91.

[Myers 1992] Brad A. Myers. "Demonstrational Interfaces: A Step Beyond Direct
Manipulation," IEEE Computer. 25(8): pp. 61-73, August, 1992.

[Myers 1995] Brad A. Myers. "User Interface Software Tools," ACM Transactions on
Computer Human Interaction. 2(1): pp. 64-103, March, 1995.

[Myers 1986] Brad A. Myers and William Buxton. "Creating Highly Interactive and
Graphical User Interfaces by Demonstration," Computer Graphics. ACM SIGGRAPH
'86 Conference Proceedings. 20(4): pp. 249-258, August, 1986.

[Myers 1990c] Brad A. Myers et. al. "Garnet: Comprehensive Support for Graphical,
Highly-interactive User Interfaces," IEEE Computer. 23(11): pp. 71-85, November,
1990.

[Myers 1993] Brad A. Myers, Richard G. McDaniel and David S. Kosbie. "Marquise:
Creating Complete User Interfaces by Demonstration". Proceedings of Human Fac-
tors in Computing Systems, ACM INTERCHI '93, Amsterdam, The Netherlands, April
24-29,1993. pp. 293-300.

[Myers 1989] Brad A. Myers, Brad Vander Zanden and Roger B. Dannenberg. "Creat-
ing Graphical Interactive Application Objects by Demonstration". Proceedings of
ACM SIGGRAPH Symposium on User Interface Software and Technology, UIST '89,
Williamsburgh, VA, November, 1989. pp. 95-104.

237

[Negroponte 1973] Nicholas Negroponte. "Recent Advances in Sketch Recognition".
Proceedings of 1973 National Computer Conference and Exposition (42), AFJPS 73,
New York, AFIPS Press. June 4-8,1973. pp. 663-675.

[Negroponte 1971] Nicholas Negroponte and James Taggart. "HUNCH -An Experi-
ment in Sketch Recognition." Computer Graphics. W. Giloi, Ed. Berlif. 1971.

[NeXT 1991] NeXT. NeXTStep and the NeXTInterface Builder. NeXT Inc., 900 Ches-
apeake Drive, Redwood City, CA 94063. 1991.

[Nielson 1993] Jakob Nielson. Usability Engineering. Boston, MA: Academic Press.
1993.

[Ousterhout 1991] John K. Ousterhout. "An XI1 Toolkit Based on the Tel Language".
Proceedings of Winter 1991 USENIX Conference, Dallas, TX, Jan 21-25, 1991. pp.
105-115.

[Pavlidis 1985] Theo Pavlidis and Christopher J. Van Wyk. "An Automatic Beautifier
for Drawings and Illustrations," Computer Graphics. ACM SIGGRAPH '85 Confer-
ence Proceedings. 19(3): pp. 225-234, July, 1985.

[Pearl 1988] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann. 1988.

[Pedersen 1993] Elin Ronby Pedersen, Kim McCall, Thomas P. Moran and Frank G.
Halasz. "Tivoli: An Electronic Whiteboard for Informal Workgroup Meetings". Pro-
ceedings of Human Factors in Computing Systems, ACM INTERCHI '93, Amsterdam,
The Netherlands, April 24-29, 1993. pp. 391-398.

[Perlin 1985] Ken Perlin. "An Image Synthesizer," Computer Graphics. SIGGRAPH
'85 Proceedings. 19(3): pp. 287-296, July, 1985.

[Pictorius 1995] Pictorius. Prograph. Pictorius Inc., 2000 Barrington St., 4th Floor,
Halifax, Nova Scotia, Canada B3J 3K1, (902) 492-2880. 1995.

[Polya 1973] G. Polya. How to Solve It. Princeton, New Jersey: Princeton University
Press. 1973.

[Pugh 1993] David Pugh. Using Interactive Sketch Interpretation to Design Solid
Objects. Ph.D. dissertation, Report #CMU-CS-93-147, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA. April, 1993.

[Ravden 1989] Susannah J. Ravden and Graham I. Johnson. Evaluating Usability of
Human-Computer Interfaces: A Practical Method. Chichester, England: Ellis Hor-
wood Limited. 1989.

[Repenning 1993] Alex Repenning. AgentSheets: A Tool for Building Domain-ori-
ented Dynamic, Visual Environments. Ph.D. dissertation, Department of Computer
Science, University of Colorado at Boulder, Boulder, CO. 1993.

238

[Repenning 1992] Alex Repenning and Tamara Sumner. "Agentsheets: A Tool for
Building Visual Programming Environments". Proceedings of Human Factors in
Computing Systems (Posters and Short Talks), ACM CHI '92, Monterey, CA, May 3-
7, 1992. p. 30.

[Rettig 1994] Marc Rettig. "Prototyping for Tiny Fingers," Communications of the
ACM. 37(4): pp. 21-27, April, 1994.

[Rhyne 1987] Jim Rhyne. "Dialogue Management for Gestural Interfaces," ACM
Computer Graphics. 21(2): pp. 137-142,1987.

[Rhyne 1991] Jim Rhyne, Doris Chow and Michael Sacks. "Enhancing the X-Window
System: Adding a Paperlike Interface and Handwriting Recognition," Dr. Dobb's Jour-
nal. 16(12): pp. 30-38, December, 1991.

[Rhyne 1993] James R. Rhyne and Catherine G. Wolf. "Recognition-Based User Inter-
faces." Advances in Human-Computer Interaction. H. R. Hartson and D. Hix, Eds.
Norwood, NJ: Ablex Publishing. 4. pp. 191-250. 1993.

[Rieman 1996] John Rieman. Personal Communication.

[Rubin 1990] Robert V. Rubin, James Walker II and Eric J. Golin. "Early Experience
with the Visual Programmer's WorkBench," IEEE Transactions on Software Engineer-
ing. 16(10): pp. 1107-1121, 1990.

[Rubine 1991a] Dean Rubine. Personal Communication.

[Rubine 1991b] Dean Rubine. The Automatic Recognition of Gestures. Ph.D. disserta-
tion, Report #CMU-CS-91-202, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA. December, 1991.

[Rubine 1991c] Dean Rubine. "Specifying Gestures by Example," Computer Graph-
ics. ACM SIGGRAPH '91 Conference Proceedings. 25(3): pp. 329-337, July, 1991.

[Salisbury 1994] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel and David H.
Salesin. "Interactive Pen-and-ink Illustration," Computer Graphics. ACM SIGGRAPH
'94 Conference Proceedings, pp. 101-108, July 24-29, 1994.

[Saund 1994] Eric Saund and Thomas P. Moran. "A Perceptually-Supported Sketch
Editor". Proceedings of ACM Symposium on User Interface Software and Technology,
UIST '94, Marina del Rey, CA, November 2-4, 1994. pp. 175-184.

[Schumann 1996] Jutta Schumann, Thomas Strothotte, Andreas Raab and Stefan
Laser. "Assessing the Effect of Non-photorealistic Rendered Images in CAD". Pro-
ceedings of Human Factors in Computing Systems, ACM CHI '96, Vancouver, Canada,
April 13-18, 1996. pp. 35-41.

[Seiter 1996] Charles Seiter. "MessagePad 120 with Newton OS 2.0," Macworld. 13 p.
57, March, 1996.

239

[Senior 1992] A.W. Senior. Off-line Handwriting Recognition: A Review and Experi-
ments. Report #CUED/F-INFENG/TR 105, Cambridge University Engineering
Department, Cambridge, England. 1992.

[Shu 1988] Nan C. Shu. Visual Programming. New York: Van Nostrand Reinhold
Company. 1988.

[Singh 1990] Gurminder Singh, Chun Hong Kok and Teng Ye Ngan. "Druid: A Sys-
tem for Demonstrational Rapid User Interface Development". Proceedings of ACM
SIGGRAPH Symposium on User Interface Software and Technology, UIST '90, Snow-
bird, UT, October, 1990. pp. 167-177.

[Software 1990] Visual Edge Software. UIM/X. Visual Edge Software Ltd., 3950 Cote
Vertu, Montreal, Quebec H4R 1V4. Phone (514) 332-6430. 1990.

[Strothotte 1994] Thomas Strothotte, Bernhard Preim, Andreas Raab, Jutta Schumann
and David R. Forsey. "How to Render Frames and Influence People". Proceedings of
Eurographics '94, Oslo, Norway, September, 1994. pp. 455-466.

[Suen 1980] Ching Y. Suen, Marc Berthod and Shunji Mori. "Automatic Recognition
of Handprinted Characters - The State of the Art," Proceedings of the IEEE. 68(4): pp.
469-487, 1980.

[Sun 1991] Sun. DevGuide: OpenWindows Developer's Guide. Sun Microsystems,
Inc., 2550 Garcia Ave., Mtn. View, Ca 94043-1100. 1991.

[Sutherland 1963] Ivan E. Sutherland. "SketchPad: A Man-Machine Graphical Com-
munication System". Proceedings ofAFIPS Spring Joint Computer Conference (23),
1963. pp. 329-346.

[Tappert 1990] Charles C. Tappert, Ching Y. Suen and Toru Wakahara. "The State of
the Art in On-Line Handwriting Recognition," IEEE Transactions on Pattern Analysis
and Machine Intelligence. 12(8): pp. 787-808, 1990.

[Thomas 1981] Frank Thomas. Disney Animation: The Illusion of Life / Frank Tho-
mas and OUie Johnston. New York: Abbeville Press. 1981.

[Thomson Software Products 1996] Thomson Software Products. TeleUSE. Aonix,
595 Market Street, 10th Floor, San Francisco, CA 94105. (415) 543-0900. 1996.

[Venolia 1994] Dan Venolia and Forrest Neiberg. "T-Cube: A Fast, Self-Disclosing
Pen-Based Alphabet". Proceedings of Human Factors in Computing Systems (Confer-
ence Companion), ACM CHI '94, Boston, MA, April 24-28, 1994. p. 218.

[Verstijnen 1996] I.M. Verstijnen, R. Stuyver, J.M. Hennessey, C.C. van Leeuwen and
R. Hamel. "Considerations for Electronic Idea-Creation Tools". Proceedings of
Human Factors in Computing Systems (Conference Companion), ACM CHI '96, Van-
couver, Canada, April 13-18,1996. pp. 197-198.

240

[Wagner 1990] Annette Wagner. "Prototyping: A Day in the Life of an Interface
Designer." The Art of Human-Computer Interface Design. B. Laurel, Ed. Reading,
MA: Addison-Wesley. pp. 79-84. 1990.

[Wang 1993] W. Wang and G.G. Grinstein. "A Survey of 3D Solid Reconstruction
From 2D Projection Line Drawings," Computer Graphics Forum. 12(2): pp. 137-158,
June, 1993.

[Weiser 1993] Mark Weiser. "Some Computer Science Issues in Ubiquitous Comput-
ing," Communications of the ACM. 36(7): pp. 74-84, 1993.

[Wellner 1989] Pierre D. Wellner. "Statemaster: A UIMS Based on Statecharts for
Prototyping and Target Implementation". Proceedings of Human Factors in Comput-
ing Systems, ACM CHI '89, Austin, TX, April 30 - May 4, 1989. pp. 177-182.

[Winkenbach 1994] Georges Winkenbach and David H. Salesin. "Computer-Gener-
ated Pen-and-ink Illustration," Computer Graphics. SIGGRAPH '94 Conference Pro-
ceedings, pp. 91-100, July 24-29, 1994.

[Wolber 1991] David Wolber and Gene Fisher. "A Demonstrational Technique for
Developing Interfaces with Dynamically Created Objects". Proceedings of ACM SIG-
GRAPH Symposium on User Interface Software and Technology, UIST '91, Hilton
Head, SC, November 11-13, 1991. pp. 221-230.

[Wolf 1988] Catherine G. Wolf. "A Comparative Study of Gestural and Keyboard
Interfaces." Proceedings of the Human Factors Society 32nd Annual Meeting, pp.
273-277. 1988.

[Wolf 1989] Catherine G. Wolf, James R. Rhyne and Hamed A. Ellozy. "The Paper-
Like Interface." Proceedings of the Third International Conference on Human-Com-
puter Interaction, pp. 494-501. 1989.

[Wong 1992] Yin Yin Wong. "Rough and Ready Prototypes: Lessons From Graphic
Design". Proceedings of Human Factors in Computing Systems (Posters and Short
Talks), ACM CHI '92, Monterey, CA, May 3-7, 1992. pp. 83-84.

[Wong 1993] Yin Yin Wong. "Layer Tool: Support for Progressive Design". Proceed-
ings of Human Factors in Computing Systems (Adjunct Proceedings), ACM INTER-
CHIP, Amsterdam, The Netherlands, April, 1993. pp. 127-128.

[Zeleznik 1996] Robert C. Zeleznik, Kenneth P. Herndon and John F. Hughes.
"SKETCH: An Interface for Sketching 3D Scences," Computer Graphics. SIG-
GRAPH'96 Conference Proceedings, pp. 163-170, August 4-6,1996.

[Zhao 1992] Rui Zhao. "On-line Geometry Recognition Using C++, an Object-Ori-
ented Approach". Proceedings of Tools Europe '92, Dortmund, Germany, Prentice
Hall. March 30,1992. pp. 371-378.

241

[Zhao 1993a] Rui Zhao. "Incremental Recognition in Gesture-Based and Syntax-
Directed Diagram Editors". Proceedings of Human Factors in Computing Systems,
ACM INTERCHI '93, Amsterdam, The Netherlands, April 24-29, 1993. pp. 95-100.

[Zhao 1993b] Von Rui Zhao. Handsketch-based Diagram Editing. Ph.D. dissertation,
University of Paderborn, Paderborn, Germany. 1993.

